Evaluate the expression:

[tex]\[ \sqrt{\frac{\frac{5^{2n} \cdot 2^n + 1 + 50^n}{5^n \cdot 8 - 5^{n+1}} \cdot \sqrt{5^{-2} - 1}}{5^{-1} \sqrt[\ln]{5 - 1}}} \][/tex]

(Note: If there is any ambiguity in the expression due to formatting, please clarify or correct it accordingly.)



Answer :

Let's solve the given expression step-by-step:

The expression to simplify and solve is:
[tex]\[ \sqrt{\frac{\frac{5^{2n} \cdot 2^n + 1 + 50^n}{5^n \cdot 8 - 5^{n+1}} \cdot \sqrt{5^{-2} - 1}}{5^{-1} \cdot \sqrt[\ln]{5 - 1}}} \][/tex]

### Step-by-Step Breakdown:

1. Numerator:
- First Component: \( 5^{2n} \cdot 2^n + 1 + 50^n \)
- Second Component: \( \sqrt{5^{-2} - 1} \)

2. Denominator:
- First Component: \( 5^n \cdot 8 - 5^{n+1} \)
- Second Component: \( 5^{-1} \cdot \sqrt[\ln]{5 - 1} \)

### Simplify Each Part:
Numerator, breaking into sub-parts:

1. First component:
[tex]\[ 5^{2n} \cdot 2^n + 1 + 50^n \][/tex]

2. Second component:
[tex]\[ \sqrt{5^{-2} - 1} \][/tex]
[tex]\[ 5^{-2} = \frac{1}{25} \][/tex]
[tex]\[ \sqrt{\frac{1}{25} - 1} = \sqrt{\frac{1 - 25}{25}} = \sqrt{\frac{-24}{25}} = \sqrt{-\frac{24}{25}} \][/tex]

Since the square root of a negative number is not real in the real number system, we conclude there must be a mistake in the setup of the problem because \( \sqrt{-\frac{24}{25}} \) is not a real number.

However, for the sake of completion, let's proceed with the assumption:
[tex]\[ \sqrt{-\frac{24}{25}} \][/tex] (This actually indicates a complex result)

Denominator, breaking into sub-parts:

1. First component:
[tex]\[ 5^n \cdot 8 - 5^{n+1} \][/tex]
[tex]\[ = 5^n \cdot 8 - 5^n \cdot 5 \][/tex]
[tex]\[ = 5^n \cdot (8 - 5) \][/tex]
[tex]\[ = 5^n \cdot 3 \][/tex]

2. Second component:
[tex]\[ 5^{-1} \cdot \sqrt[\ln]{5 - 1} \][/tex]
[tex]\[ = \frac{1}{5} \cdot (5 - 1)^{\frac{1}{\ln}} \][/tex]
[tex]\[ = \frac{1}{5} \cdot 4^{\frac{1}{\ln}} \][/tex]

Notice, this still seems undefined because there is no specific base for natural logarithm applicability. Assuming however:

[tex]\[ 4^{\frac{1}{\ln}} \][/tex]

Combining everything:
This becomes highly complex especially due matter implied of unknown, as we presumed earlier considering any calculation of imaginary or even imaginary parts based on assumptions we get:

[tex]\[ = \sqrt{\frac{\left(\frac{5^{2n} \cdot 2^n + 1 + 50^n}{5^n \cdot 3}\right) \cdot complexPart}{\left(\frac{4}{5}\right) complexNumerator}} \][/tex]

### Conclusion:
In summary, given various unknowns (logarithmic results simplified and imaginary result) or proper definition, effectively simplifying mathematically might lead erroneous result or correct function revisits on assume setups.

Thus, suggesting revalidation is recommended of core mathematical fundamentals to reassess problem-solving strategically.