Consider the function \( f(x) = x^2 + 12x + 11 \).

[tex]\[ x \text{-intercepts:} \][/tex]
[tex]\[ 0 = x^2 + 12x + 11 \][/tex]
[tex]\[ 0 = (x + 1)(x + 11) \][/tex]

[tex]\[ y \text{-intercept:} \][/tex]
[tex]\[ f(0) = (0)^2 + 12(0) + 11 \][/tex]

What are the intercepts of the function?

The \( x \)-intercepts are \(\square\)

The [tex]\( y \)[/tex]-intercept is [tex]\(\square\)[/tex]



Answer :

Let's solve for the intercepts of the function \( f(x) = x^2 + 12x + 11 \).

1. Finding the \( x \)-intercepts:
To find the \( x \)-intercepts, we need to solve the equation \( f(x) = 0 \).

[tex]\[ 0 = x^2 + 12x + 11 \][/tex]

Factor the quadratic equation.

[tex]\[ 0 = (x + 1)(x + 11) \][/tex]

Set each factor equal to zero to solve for the \( x \)-intercepts:

[tex]\[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \][/tex]
[tex]\[ x + 11 = 0 \quad \Rightarrow \quad x = -11 \][/tex]

Therefore, the \( x \)-intercepts are \( x = -1 \) and \( x = -11 \).

2. Finding the \( y \)-intercept:
To find the \( y \)-intercept, we need to evaluate the function at \( x = 0 \).

[tex]\[ f(0) = (0)^2 + 12(0) + 11 \][/tex]
[tex]\[ f(0) = 11 \][/tex]

Therefore, the \( y \)-intercept is 11.

Thus, the intercepts of the function are:
- The \( x \)-intercepts are \( -1 \) and \( -11 \).
- The [tex]\( y \)[/tex]-intercept is 11.