Use the formula [tex]A = P(1 + rt)[/tex] to calculate the maturity value of the simple interest loan. (Round your answer to two decimal places.)

Given:
[tex]P = \$14,000[/tex], [tex]r = 8.4\%[/tex], [tex]t = 4 \text{ months}[/tex]

Calculate the maturity value.



Answer :

To calculate the maturity value of a simple interest loan, we use the formula:

[tex]\[ A = P(1 + rt) \][/tex]

where:
- \( P \) is the principal amount (initial amount of the loan)
- \( r \) is the annual interest rate (as a decimal)
- \( t \) is the time period in years

Given:
- \( P = \$14,000 \)
- \( r = 8.4\% \)
- \( t = 4 \text{ months} \)

Let's break it down step-by-step:

1. Convert the interest rate to a decimal:
[tex]\[ r = 8.4\% = \frac{8.4}{100} = 0.084 \][/tex]

2. Convert the time period into years:
[tex]\[ t = \frac{4 \text{ months}}{12 \text{ months/year}} = \frac{4}{12} = \frac{1}{3} \approx 0.3333 \][/tex]

3. Substitute the values into the formula:
[tex]\[ A = 14000 \left(1 + 0.084 \times 0.3333\right) \][/tex]

4. Calculate the value inside the parentheses:
[tex]\[ 1 + 0.084 \times 0.3333 = 1 + 0.028 = 1.028 \][/tex]

5. Multiply by the principal amount \( P \):
[tex]\[ A = 14000 \times 1.028 = 14392.0 \][/tex]

So, the maturity value of the simple interest loan, rounded to two decimal places, is:

[tex]\[ \boxed{14392.00} \][/tex]

Thus, the answer is $14,392.00.