The given expression appears to contain inconsistencies and may need correction to make sense mathematically. Here's the corrected version:

[tex]\[
-58 - 3 + 2 + \left[7 - 2 \left(5 - 3\right)\right]
\][/tex]

And for the second part, it should be consistent with proper mathematical notation:

[tex]\[
-5 \left\{-3 + 2 + \left[7 - 2 + 2\right]\right\}
\][/tex]



Answer :

Let's solve the given expressions step by step.

First Expression: \( -58 - 3 + 2 + [7 - 2(5 - 3)] \)

1. First, we solve the innermost parentheses \( (5 - 3) \).
[tex]\[ 5 - 3 = 2 \][/tex]

2. Next, we multiply the result by 2.
[tex]\[ 2 \times 2 = 4 \][/tex]

3. We then subtract this result from 7.
[tex]\[ 7 - 4 = 3 \][/tex]

4. Now, we substitute this result back into the original expression:
[tex]\[ -58 - 3 + 2 + 3 \][/tex]

5. Finally, we perform the addition and subtraction from left to right:
[tex]\[ -58 - 3 = -61 \][/tex]
[tex]\[ -61 + 2 = -59 \][/tex]
[tex]\[ -59 + 3 = -56 \][/tex]

So, the result for the first expression is \(-56\).

Second Expression: \( -5\{-3 + 2 + [7 - 2 + (2)]\} \)

1. First, we solve the innermost parentheses \( (2) \). This value is already 2.

2. Next, we simplify within the square brackets \( 7 - 2 + 2 \).
[tex]\[ 7 - 2 = 5 \][/tex]
[tex]\[ 5 + 2 = 7 \][/tex]

3. We substitute this result back into the expression inside the curly braces:
[tex]\[ -3 + 2 + 7 \][/tex]

4. Now, we perform the addition and subtraction from left to right:
[tex]\[ -3 + 2 = -1 \][/tex]
[tex]\[ -1 + 7 = 6 \][/tex]

5. Finally, we multiply this result by \(-5\):
[tex]\[ -5 \times 6 = -30 \][/tex]

So, the result for the second expression is [tex]\(-30\)[/tex].