\begin{tabular}{l}
Thermodynamic Properties \\
\begin{tabular}{|l|c|}
\hline
Property & Value \\
\hline
[tex]$c$[/tex] (solid) & [tex]$0.5 \, \text{J/g} \, ^{\circ} \text{C}$[/tex] \\
\hline
[tex]$c$[/tex] (liquid) & [tex]$1.0 \, \text{J/g} \, ^{\circ} \text{C}$[/tex] \\
\hline
[tex]$c$[/tex] (gas) & [tex]$2.0 \, \text{J/g} \, ^{\circ} \text{C}$[/tex] \\
\hline
Melting Point & [tex]$-114^{\circ} \text{C}$[/tex] \\
\hline
Boiling Point & [tex]$78^{\circ} \text{C}$[/tex] \\
\hline
\end{tabular} \\
\end{tabular}

How much heat is released when [tex]$50.0 \, \text{g}$[/tex] of ethanol cools from [tex]$99^{\circ} \text{C}$[/tex] to [tex]$79^{\circ} \text{C}$[/tex]?

A. [tex]$1200 \, \text{J}$[/tex]

B. [tex]$1100 \, \text{J}$[/tex]

C. [tex]$600 \, \text{J}$[/tex]

D. [tex]$550 \, \text{J}$[/tex]



Answer :

Let's solve this step-by-step:

1. Identify the Given Data:
- Mass of ethanol, \( m = 50.0 \) grams.
- Initial temperature, \( T_{\text{initial}} = 99^\circ \, \text{C} \).
- Final temperature, \( T_{\text{final}} = 79^\circ \, \text{C} \).
- Specific heat capacity of liquid ethanol, \( c_{\text{liquid}} = 1.0 \) J/g°C.

2. Determine the Temperature Change:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 99^\circ \, \text{C} - 79^\circ \, \text{C} = 20^\circ \, \text{C} \][/tex]

3. Apply the Formula for Heat Released:
The formula to calculate heat \( Q \) released or absorbed is:
[tex]\[ Q = mc\Delta T \][/tex]
Where:
- \( m \) = mass
- \( c \) = specific heat capacity
- \( \Delta T \) = temperature change

4. Substitute the Values into the Formula:
[tex]\[ Q = 50.0 \, \text{g} \times 1.0 \, \frac{\text{J}}{\text{g}^\circ \text{C}} \times 20^\circ \, \text{C} \][/tex]
[tex]\[ Q = 50.0 \times 20 = 1000 \, \text{J} \][/tex]

Therefore, the heat released when 50.0 g of ethanol cools from \( 99^\circ \, \text{C} \) to \( 79^\circ \, \text{C} \) is \( 1000 \) J.

The correct answer is [tex]\( 1000 \)[/tex] J.