Simplify the expression given [tex]$x \ \textgreater \ 0$[/tex].

[tex]\sqrt{\frac{2x}{6}} \cdot \sqrt{\frac{x}{3}}[/tex]



Answer :

Sure, let's simplify the expression step by step:

Given the expression:
[tex]\[ \sqrt{\frac{2x}{6}} \cdot \sqrt{\frac{x}{3}} \][/tex]

First, let's simplify the fractions inside the square roots separately.

For the first square root:
[tex]\[ \sqrt{\frac{2x}{6}} \][/tex]

We can simplify \(\frac{2x}{6}\):
[tex]\[ \frac{2x}{6} = \frac{2}{6} \cdot x = \frac{1}{3} \cdot x = \frac{x}{3} \][/tex]

So the expression inside the first square root simplifies to:
[tex]\[ \sqrt{\frac{x}{3}} \][/tex]

Next, let's look at the second square root:
[tex]\[ \sqrt{\frac{x}{3}} \][/tex]

Since both expressions inside the square roots have now become the same, the given expression is:
[tex]\[ \sqrt{\frac{x}{3}} \cdot \sqrt{\frac{x}{3}} \][/tex]

We can use the property of square roots that \(\sqrt{a} \cdot \sqrt{a} = a\):
[tex]\[ \sqrt{\frac{x}{3}} \cdot \sqrt{\frac{x}{3}} = \frac{x}{3} \][/tex]

Therefore, the simplified expression is:
[tex]\[ \boxed{\frac{x}{3}} \][/tex]