Answer :

Sure, let's solve the equation step-by-step.

Given the equation:
[tex]\[ 2(x + 5) = x - 4 \][/tex]

1. Expand the left side:
[tex]\[ 2 \cdot x + 2 \cdot 5 = x - 4 \][/tex]
[tex]\[ 2x + 10 = x - 4 \][/tex]

2. Move all terms involving \(x\) to one side and constant terms to the other side. Subtract \(x\) from both sides:
[tex]\[ 2x - x + 10 = - 4 \][/tex]
[tex]\[ x + 10 = -4 \][/tex]

3. Isolate \(x\) by subtracting 10 from both sides:
[tex]\[ x + 10 - 10 = -4 - 10 \][/tex]
[tex]\[ x = -14 \][/tex]

So, the solution to the equation \(2(x+5)=x-4\) is:
[tex]\[ x = -14 \][/tex]