Simplify to create an equivalent expression.

[tex]\[ 8 - 4(-x + 5) \][/tex]

Choose one answer:
A. \( 4x - 12 \)
B. \( -4x - 12 \)
C. \( 4x + 13 \)
D. [tex]\( 4x + 5 \)[/tex]



Answer :

Let's simplify the given expression step-by-step:

We start with the expression:
[tex]\[ 8 - 4(-x + 5) \][/tex]

First, distribute the \(-4\) to both terms inside the parentheses:
[tex]\[ 8 - 4(-x) + (-4)(5) \][/tex]

Simplify each part of the distribution:
[tex]\[ 8 - (-4x) - 20 \][/tex]

Remember that subtracting a negative is the same as adding a positive:
[tex]\[ 8 + 4x - 20 \][/tex]

Combine like terms by adding and subtracting the constants:
[tex]\[ 8 - 20 + 4x \][/tex]
[tex]\[ -12 + 4x \][/tex]

Rewriting the expression in standard form (terms in descending order of their degree), we get:
[tex]\[ 4x - 12 \][/tex]

Hence, the simplified form of the given expression is:
[tex]\[ 4x - 12 \][/tex]

Now we match this with the given options:

- (A) \(4x - 12\)
- (B) \(-4x - 12\)
- (C) \(4x + 13\)
- (D) \(4x + 5\)

The correct answer is option (A):
[tex]\[ 4x - 12 \][/tex]