Adult men have an average height of 69.0 inches with a standard deviation of 2.8 inches. Find the height of a man with a [tex]$z[tex]$-score of -0.46$[/tex][/tex]. Round your answer to one decimal place.

[tex]\square[/tex] inches



Answer :

To find the height of a man given the [tex]$z$[/tex]-score of -0.46, we will use the formula that relates [tex]$z$[/tex]-scores to the individual data points in a normally distributed dataset:

[tex]\[ \text{height} = \text{mean height} + (z \times \text{standard deviation}) \][/tex]

Here are the given values:
- Mean height (\(\mu\)): 69.0 inches
- Standard deviation (\(\sigma\)): 2.8 inches
- \(z\)-score (\(z\)): -0.46

Now, we substitute the values into the formula:
[tex]\[ \text{height} = 69.0 + (-0.46 \times 2.8) \][/tex]

Calculate the product of the \(z\)-score and the standard deviation:
[tex]\[ -0.46 \times 2.8 = -1.288 \][/tex]

Next, add this result to the mean height:
[tex]\[ 69.0 + (-1.288) = 67.712 \][/tex]

Finally, we round this result to one decimal place:
[tex]\[ 67.712 \approx 67.7 \][/tex]

Therefore, the height of the man with a [tex]$z$[/tex]-score of -0.46 is:
[tex]\[ \boxed{67.7} \text{ inches} \][/tex]