Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar.

[tex]$\overleftrightarrow{A B}$[/tex] and [tex]$\overleftarrow{B C}$[/tex] form a right angle at their point of intersection, [tex]$B$[/tex].

If the coordinates of [tex]$A$[/tex] and [tex]$B$[/tex] are [tex]$(14, -1)$[/tex] and [tex]$(2, 1)$[/tex], respectively, the equation of [tex]$\overleftrightarrow{A B}$[/tex] is [tex]$y = \square x + \square$[/tex].

If the [tex]$y$[/tex]-coordinate of point [tex]$C$[/tex] is 13, its [tex]$x$[/tex]-coordinate is [tex]$\square$[/tex].



Answer :

Let's solve the problem step-by-step:

1. Determine the slope of line \( \overleftrightarrow{A B} \):
The coordinates are \( A = (14, -1) \) and \( B = (2, 1) \).
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here,
[tex]\[ m = \frac{1 - (-1)}{2 - 14} = \frac{2}{-12} = -\frac{1}{6} \][/tex]
So, the slope of \( \overleftrightarrow{A B} \) is \(-\frac{1}{6}\).

2. Find the y-intercept of line \( \overleftrightarrow{A B} \):
The equation of a line in slope-intercept form is \( y = mx + c \). We already have \( m = -\frac{1}{6} \).
To find \( c \) (the y-intercept), we use the point \( B \) which is \((2, 1)\):
[tex]\[ 1 = -\frac{1}{6} \cdot 2 + c \][/tex]
Simplifying, we get:
[tex]\[ 1 = -\frac{1}{3} + c \implies c = 1 + \frac{1}{3} = \frac{4}{3} \][/tex]
So, the y-intercept is \(\frac{4}{3}\) and the equation of \( \overleftrightarrow{A B} \) is:
[tex]\[ y = -\frac{1}{6}x + \frac{4}{3} \][/tex]

3. Find the slope of line \( \overleftrightarrow{B C} \):
Since \( \overleftrightarrow{B C} \) is perpendicular to \( \overleftrightarrow{A B} \), the product of their slopes is \(-1\).
Let \( m_{BC} \) be the slope of \( \overleftrightarrow{B C} \). Then:
[tex]\[ m_{BC} \cdot \left( -\frac{1}{6} \right) = -1 \implies m_{BC} = 6 \][/tex]
Thus, the slope of line \( \overleftrightarrow{B C} \) is \( 6 \).

4. Determine the x-coordinate of point \( C \) given its y-coordinate is 13:
The equation of \( \overleftrightarrow{B C} \) can be written using the slope-intercept form and the point \( B = (2, 1) \):
[tex]\[ y - 1 = 6(x - 2) \][/tex]
Given \( y = 13 \):
[tex]\[ 13 - 1 = 6(x - 2) \][/tex]
Simplifying this equation:
[tex]\[ 12 = 6(x - 2) \implies 2 = x - 2 \implies x = 4 \][/tex]
So, the x-coordinate of point \( C \) is \( 4 \).

Now, let's fill in the boxes in the original problem statement accordingly:

If the coordinates of \( A \) and \( B \) are \( (14, -1) \) and \( (2, 1) \), respectively, the \( y \)-intercept of \( \overleftrightarrow{A B} \) is \( y = -\frac{1}{6}x + \frac{4}{3} \).

If the [tex]\( y \)[/tex]-coordinate of point [tex]\( C \)[/tex] is [tex]\( 13 \)[/tex], its [tex]\( x \)[/tex]-coordinate is [tex]\( 4 \)[/tex].