[tex]\[
\left(-9x^4 + 4x^2 + 15 - 14x^3\right) \div \left(-x^2 - x + 2\right)
\][/tex]

Write your answer in the following form: Quotient [tex]$+\frac{\text{Remainder}}{-x^2 - x + 2}$[/tex].

[tex]\[
\frac{-9x^4 + 4x^2 + 15 - 14x^3}{-x^2 - x + 2} = \square + \frac{\square}{-x^2 - x + 2}
\][/tex]



Answer :

To perform the polynomial division of

[tex]\[ \frac{-9 x^4 + 4 x^2 + 15 - 14 x^3}{-x^2 - x + 2}, \][/tex]

we need to follow the steps of polynomial long division.

### Step-by-Step Solution

1. Arrange the Polynomials:
The dividend (numerator) should be ordered by descending powers of \( x \):
[tex]\[ -9x^4 - 14x^3 + 4x^2 + 0x + 15. \][/tex]
The divisor (denominator) is:
[tex]\[ -x^2 - x + 2. \][/tex]

2. Divide the Leading Terms:
Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{-9x^4}{-x^2} = 9x^2. \][/tex]

3. Multiply and Subtract:
Multiply the entire divisor by this term and subtract from the dividend:
[tex]\[ \begin{aligned} (-9x^4 - 14x^3 + 4x^2 + 0x + 15) - (9x^2 \cdot (-x^2 - x + 2)) & = (-9x^4 - 14x^3 + 4x^2 + 0x + 15) - (-9x^4 - 9x^3 + 18x^2) \\ & = 0x^4 - 5x^3 - 14x^2 + 0x + 15. \end{aligned} \][/tex]

4. Repeat the Process:
Now divide \(-5x^3\) by \(-x^2\):
[tex]\[ \frac{-5x^3}{-x^2} = 5x. \][/tex]
Multiply and subtract again:
[tex]\[ \begin{aligned} (-5x^3 - 14x^2 + 0x + 15) - (5x \cdot (-x^2 - x + 2)) & = (-5x^3 - 14x^2 + 0x + 15) - (-5x^3 - 5x^2 + 10x) \\ & = 0x^3 - 9x^2 - 10x + 15. \end{aligned} \][/tex]

5. Final Division and Remainder:
Now divide \(-9x^2\) by \(-x^2\):
[tex]\[ \frac{-9x^2}{-x^2} = 9. \][/tex]
Multiply and subtract:
[tex]\[ \begin{aligned} (-9x^2 - 10x + 15) - (9 \cdot (-x^2 - x + 2)) & = (-9x^2 - 10x + 15) - (-9x^2 - 9x + 18) \\ & = 0x^2 - x - 3. \end{aligned} \][/tex]

### Combining the Result

The quotient is:
[tex]\[ 9x^2 + 5x + 9. \][/tex]
The remainder is:
[tex]\[ -x - 3. \][/tex]

So, the final answer in the requested form is:
[tex]\[ 9x^2 + 5x + 9 + \frac{-x - 3}{-x^2 - x + 2}. \][/tex]