6. The first asteroid to be discovered is Ceres. It is the largest and most massive asteroid in our solar system's asteroid belt, having an estimated mass of [tex]$3.0 \times 10^{21} \, \text{kg}[tex]$[/tex] and an orbital speed of [tex]$[/tex]17900 \, \text{m/s}$[/tex].

Determine the amount of kinetic energy possessed by Ceres.



Answer :

To determine the amount of kinetic energy possessed by Ceres, we will use the formula for kinetic energy (KE):

[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

where:
- \( m \) is the mass of the object
- \( v \) is the velocity of the object

Given the data:
- The mass of Ceres \( m = 3.0 \times 10^{21} \) kg
- The velocity of Ceres \( v = 17900 \) m/s

Let's plug these values into the formula and perform the calculation step-by-step:

1. Square the velocity (\( v^2 \)):
[tex]\[ v^2 = (17900 \, \text{m/s})^2 = 320410000 \, (\text{m/s})^2 \][/tex]

2. Multiply the mass (\( m \)) by the squared velocity (\( v^2 \)):
[tex]\[ m \times v^2 = (3.0 \times 10^{21} \, \text{kg}) \times (320410000 \, (\text{m/s})^2) \][/tex]
When you do this multiplication, you get:
[tex]\[ 3.0 \times 10^{21} \times 320410000 = 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 \][/tex]

3. Multiply the result by \( \frac{1}{2} \) to find the kinetic energy:
[tex]\[ KE = \frac{1}{2} \times 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 = 4.80615 \times 10^{29} \, \text{Joules} \][/tex]

Thus, the amount of kinetic energy possessed by Ceres is:
[tex]\[ 4.80615 \times 10^{29} \, \text{Joules} \][/tex]