Answer :
## Question 1: Determining the Effect of Temperature on Water Absorption Capacity of Gram Seeds
### Procedure:
1. Weighing Before Soaking:
- Take 20 grams of gram seeds and weigh them on a common balance. Label this initial weight as \( W_1 = 20 \, \text{g} \).
2. Cold Water Soaking:
- Place the gram seeds in a bowl containing cold water and let them soak for half an hour.
- After soaking, take the gram seeds out and gently dry them using blotting paper or a paper towel.
- Weigh the soaked gram seeds. Label this as \( W_2 \).
3. Room Temperature Water Soaking:
- Repeat the above steps using water at room temperature.
4. Hot Water Soaking:
- Similarly, repeat the steps using hot water.
### Observation Table:
| Temperature | Weight of seeds before soaking (g), \( W_1 \) | Weight of seeds after soaking (g), \( W_2 \) | Percentage of water absorbed \(\left\lceil\frac{(W_2 - W_1)}{W_1}\right\rceil \times 100\) |
|-------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|
| Cold water | 20 | 25 | 25.0% |
| Water at Room temperature | 20 | 28 | 40.0% |
| Hot water | 20 | 30 | 50.0% |
### Conclusion:
- Cold Water: The percentage of water absorbed is 25.0%.
- Room Temperature Water: The percentage of water absorbed is 40.0%.
- Hot Water: The percentage of water absorbed is 50.0%.
The data shows that as the temperature of the water increases, the gram seeds tend to absorb a higher percentage of water.
---
## Question 2: Designing an Experiment to Find the Speed of a Favorite Object
### Step-by-Step Procedure:
1. Selecting the Object:
- Choose your favorite object. For this example, let's consider a toy car.
2. Determining Distance and Time:
- Set a straight track for the toy car.
- Mark distances at regular intervals, such as 5 meters.
- Use a stopwatch to record the time taken for the toy car to cover each distance.
### Data Table:
| Distance (m) | Time (s) |
|--------------|----------|
| 0 | 0 |
| 5 | 2 |
| 10 | 4 |
| 15 | 6 |
| 20 | 8 |
| 25 | 10 |
### Distance-Time Graph:
- Plot the distance on the Y-axis and the time on the X-axis.
### Calculation of Speed:
- The gradient (slope) of the distance-time graph gives the speed.
- Gradient = \(\frac{\Delta \text{Distance}}{\Delta \text{Time}} = \frac{25 \, \text{m}}{10 \, \text{s}} = 2.5 \, \text{m/s}\)
- The speed of the toy car is constant at 2.5 m/s.
### Speed at Different Intervals:
1. 0 to 5 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
2. 5 to 10 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
3. 10 to 15 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
4. 15 to 20 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
5. 20 to 25 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
The correlation between distance and time illustrates that the toy car moves at a constant speed throughout the intervals.
---
## Question 3: Collage of Solids, Liquids, and Gases in Everyday Life
### Instructions for Creating the Collage:
1. Materials Needed:
- Colored A4 sheets
- Scissors
- Glue
- Pictures of examples of solids, liquids, and gases (can be printed or cut from magazines)
- Markers for labeling
2. Procedure:
- Solids:
- Cut and paste pictures of various solids like a chair, table, book, etc.
- Label each picture and write a brief annotation explaining its significance (e.g., "Chair: Used for sitting, provides stability and support.").
- Liquids:
- Cut and paste pictures of different liquids such as water, juice, oil, etc.
- Label each picture and provide a brief annotation (e.g., "Water: Essential for life, used in drinking, cooking, and cleaning.").
- Gases:
- Cut and paste pictures depicting gases such as helium balloons, air, etc.
- Label each and add a brief annotation (e.g., "Air: Vital for breathing, contains oxygen needed by humans and animals.").
3. Assembly:
- Arrange the pictures neatly on the colored A4 sheets.
- Make sure the collage is visually appealing and informative.
- Use colored markers to add titles and labels.
### Example Layout:
- Top Section: Solids
- Pictures of a chair, table, book.
- Middle Section: Liquids
- Pictures of water, juice, oil.
- Bottom Section: Gases
- Pictures of a helium balloon, breathing air.
Each section should have a clear title and the respective pictures along with their annotations, explaining their everyday significance.
### Procedure:
1. Weighing Before Soaking:
- Take 20 grams of gram seeds and weigh them on a common balance. Label this initial weight as \( W_1 = 20 \, \text{g} \).
2. Cold Water Soaking:
- Place the gram seeds in a bowl containing cold water and let them soak for half an hour.
- After soaking, take the gram seeds out and gently dry them using blotting paper or a paper towel.
- Weigh the soaked gram seeds. Label this as \( W_2 \).
3. Room Temperature Water Soaking:
- Repeat the above steps using water at room temperature.
4. Hot Water Soaking:
- Similarly, repeat the steps using hot water.
### Observation Table:
| Temperature | Weight of seeds before soaking (g), \( W_1 \) | Weight of seeds after soaking (g), \( W_2 \) | Percentage of water absorbed \(\left\lceil\frac{(W_2 - W_1)}{W_1}\right\rceil \times 100\) |
|-------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|
| Cold water | 20 | 25 | 25.0% |
| Water at Room temperature | 20 | 28 | 40.0% |
| Hot water | 20 | 30 | 50.0% |
### Conclusion:
- Cold Water: The percentage of water absorbed is 25.0%.
- Room Temperature Water: The percentage of water absorbed is 40.0%.
- Hot Water: The percentage of water absorbed is 50.0%.
The data shows that as the temperature of the water increases, the gram seeds tend to absorb a higher percentage of water.
---
## Question 2: Designing an Experiment to Find the Speed of a Favorite Object
### Step-by-Step Procedure:
1. Selecting the Object:
- Choose your favorite object. For this example, let's consider a toy car.
2. Determining Distance and Time:
- Set a straight track for the toy car.
- Mark distances at regular intervals, such as 5 meters.
- Use a stopwatch to record the time taken for the toy car to cover each distance.
### Data Table:
| Distance (m) | Time (s) |
|--------------|----------|
| 0 | 0 |
| 5 | 2 |
| 10 | 4 |
| 15 | 6 |
| 20 | 8 |
| 25 | 10 |
### Distance-Time Graph:
- Plot the distance on the Y-axis and the time on the X-axis.
### Calculation of Speed:
- The gradient (slope) of the distance-time graph gives the speed.
- Gradient = \(\frac{\Delta \text{Distance}}{\Delta \text{Time}} = \frac{25 \, \text{m}}{10 \, \text{s}} = 2.5 \, \text{m/s}\)
- The speed of the toy car is constant at 2.5 m/s.
### Speed at Different Intervals:
1. 0 to 5 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
2. 5 to 10 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
3. 10 to 15 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
4. 15 to 20 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
5. 20 to 25 meters: Speed = \(\frac{5 \, \text{m}}{2 \, \text{s}} = 2.5 \, \text{m/s}\)
The correlation between distance and time illustrates that the toy car moves at a constant speed throughout the intervals.
---
## Question 3: Collage of Solids, Liquids, and Gases in Everyday Life
### Instructions for Creating the Collage:
1. Materials Needed:
- Colored A4 sheets
- Scissors
- Glue
- Pictures of examples of solids, liquids, and gases (can be printed or cut from magazines)
- Markers for labeling
2. Procedure:
- Solids:
- Cut and paste pictures of various solids like a chair, table, book, etc.
- Label each picture and write a brief annotation explaining its significance (e.g., "Chair: Used for sitting, provides stability and support.").
- Liquids:
- Cut and paste pictures of different liquids such as water, juice, oil, etc.
- Label each picture and provide a brief annotation (e.g., "Water: Essential for life, used in drinking, cooking, and cleaning.").
- Gases:
- Cut and paste pictures depicting gases such as helium balloons, air, etc.
- Label each and add a brief annotation (e.g., "Air: Vital for breathing, contains oxygen needed by humans and animals.").
3. Assembly:
- Arrange the pictures neatly on the colored A4 sheets.
- Make sure the collage is visually appealing and informative.
- Use colored markers to add titles and labels.
### Example Layout:
- Top Section: Solids
- Pictures of a chair, table, book.
- Middle Section: Liquids
- Pictures of water, juice, oil.
- Bottom Section: Gases
- Pictures of a helium balloon, breathing air.
Each section should have a clear title and the respective pictures along with their annotations, explaining their everyday significance.