Answer :
Certainly! Let's solve the problem step by step:
1) Given fractions to multiply:
[tex]\[ \frac{1}{3} \times \frac{1}{4} \][/tex]
2) First, let's identify the numerators and the denominators:
- The numerator of the first fraction (\(\frac{1}{3}\)) is 1.
- The denominator of the first fraction (\(\frac{1}{3}\)) is 3.
- The numerator of the second fraction (\(\frac{1}{4}\)) is 1.
- The denominator of the second fraction (\(\frac{1}{4}\)) is 4.
3) To multiply two fractions, multiply the numerators together and the denominators together:
[tex]\[ \text{Numerators: } 1 \times 1 = 1 \][/tex]
[tex]\[ \text{Denominators: } 3 \times 4 = 12 \][/tex]
4) Therefore, the product of \(\frac{1}{3}\) and \(\frac{1}{4}\) is:
[tex]\[ \frac{1 \times 1}{3 \times 4} = \frac{1}{12} \][/tex]
5) Convert the fraction into a decimal form for easier interpretation:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]
Hence, the product of \(\frac{1}{3}\) and \(\frac{1}{4}\) is:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]
1) Given fractions to multiply:
[tex]\[ \frac{1}{3} \times \frac{1}{4} \][/tex]
2) First, let's identify the numerators and the denominators:
- The numerator of the first fraction (\(\frac{1}{3}\)) is 1.
- The denominator of the first fraction (\(\frac{1}{3}\)) is 3.
- The numerator of the second fraction (\(\frac{1}{4}\)) is 1.
- The denominator of the second fraction (\(\frac{1}{4}\)) is 4.
3) To multiply two fractions, multiply the numerators together and the denominators together:
[tex]\[ \text{Numerators: } 1 \times 1 = 1 \][/tex]
[tex]\[ \text{Denominators: } 3 \times 4 = 12 \][/tex]
4) Therefore, the product of \(\frac{1}{3}\) and \(\frac{1}{4}\) is:
[tex]\[ \frac{1 \times 1}{3 \times 4} = \frac{1}{12} \][/tex]
5) Convert the fraction into a decimal form for easier interpretation:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]
Hence, the product of \(\frac{1}{3}\) and \(\frac{1}{4}\) is:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]