Answer :
To solve the problem \(\frac{1}{3} \times \frac{1}{4}\), follow these steps:
1. Identify the numerators and denominators of each fraction.
- The first fraction \(\frac{1}{3}\) has a numerator of 1 and a denominator of 3.
- The second fraction \(\frac{1}{4}\) has a numerator of 1 and a denominator of 4.
2. Multiply the numerators together.
- Multiply 1 (the numerator of the first fraction) by 1 (the numerator of the second fraction):
[tex]\[ 1 \times 1 = 1 \][/tex]
3. Multiply the denominators together.
- Multiply 3 (the denominator of the first fraction) by 4 (the denominator of the second fraction):
[tex]\[ 3 \times 4 = 12 \][/tex]
4. Write the product of the numerators over the product of the denominators.
[tex]\[ \frac{1 \times 1}{3 \times 4} = \frac{1}{12} \][/tex]
5. Convert the fraction to a decimal.
- To convert \(\frac{1}{12}\) to a decimal, divide 1 by 12:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]
Thus, [tex]\(\frac{1}{3} \times \frac{1}{4} = 0.08333333333333333\)[/tex].
1. Identify the numerators and denominators of each fraction.
- The first fraction \(\frac{1}{3}\) has a numerator of 1 and a denominator of 3.
- The second fraction \(\frac{1}{4}\) has a numerator of 1 and a denominator of 4.
2. Multiply the numerators together.
- Multiply 1 (the numerator of the first fraction) by 1 (the numerator of the second fraction):
[tex]\[ 1 \times 1 = 1 \][/tex]
3. Multiply the denominators together.
- Multiply 3 (the denominator of the first fraction) by 4 (the denominator of the second fraction):
[tex]\[ 3 \times 4 = 12 \][/tex]
4. Write the product of the numerators over the product of the denominators.
[tex]\[ \frac{1 \times 1}{3 \times 4} = \frac{1}{12} \][/tex]
5. Convert the fraction to a decimal.
- To convert \(\frac{1}{12}\) to a decimal, divide 1 by 12:
[tex]\[ \frac{1}{12} \approx 0.08333333333333333 \][/tex]
Thus, [tex]\(\frac{1}{3} \times \frac{1}{4} = 0.08333333333333333\)[/tex].
The answer will be 1/12 multiply the denominators and you’re good to go