A car runs [tex]16 \text{ km}[/tex] using 1 litre of petrol. How much distance will it cover using [tex]2 \frac{3}{4}[/tex] litres of petrol?



Answer :

Certainly! Let's solve this step-by-step.

1. Understanding the Problem Statement:
- We know the car runs 16 kilometers using 1 litre of petrol.
- We're given that the car has \(2 \frac{3}{4}\) litres of petrol available.

2. Convert Mixed Fraction to Improper Fraction:
- The given petrol amount is \(2 \frac{3}{4}\) litres. To make calculations easier, we can convert this mixed fraction to an improper fraction or a decimal.
- \(2 \frac{3}{4}\) can be converted to a decimal as follows:
[tex]\[ 2 \frac{3}{4} = 2 + \frac{3}{4} = 2 + 0.75 = 2.75 \text{ litres} \][/tex]

3. Calculate the Total Distance:
- We know that 1 litre of petrol allows the car to travel 16 kilometers.
- To find out how many kilometers the car can travel with 2.75 litres, we multiply the distance per litre by the total litres available:
[tex]\[ \text{Distance} = \text{Distance per litre} \times \text{Litres available} \][/tex]
[tex]\[ \text{Distance} = 16 \text{ km/litre} \times 2.75 \text{ litres} \][/tex]

4. Perform the Multiplication:
- Now, multiply 16 km/litre by 2.75 litres:
[tex]\[ 16 \times 2.75 = 16 \times \left(2 + 0.75\right) = 16 \times 2 + 16 \times 0.75 \][/tex]
[tex]\[ 16 \times 2 = 32 \][/tex]
[tex]\[ 16 \times 0.75 = 12 \][/tex]
[tex]\[ 32 + 12 = 44 \][/tex]

5. Conclusion:
- Therefore, the car will cover a distance of 44 kilometers using \(2 \frac{3}{4}\) litres of petrol.

So, the car will cover [tex]\(44 \text{ km}\)[/tex].