Answer :
To find the values of \( x = \ln(\sqrt{1 + t^2}) \) and \( y = \arctan(t) \) as \( t \) varies from 0 to 1, we proceed in the following steps:
1. Parameterize \( t \) from 0 to 1:
To compute the values of \( x \) and \( y \) for \( t \) in the interval [0, 1], we break this interval into a set of smaller steps. In this case, we are using 1000 steps.
2. Compute \( x \) values:
For each value of \( t \) in the interval [0, 1], compute \( x \) using the formula:
[tex]\[ x = \ln(\sqrt{1 + t^2}) \][/tex]
The formula \( \sqrt{1 + t^2} \) inside the logarithm simplifies to:
[tex]\[ x = \frac{1}{2} \ln(1 + t^2) \][/tex]
- When \( t = 0 \):
[tex]\[ x = \ln(\sqrt{1 + 0^2}) = \ln(1) = 0 \][/tex]
- As \( t \) increases, \( x \) increases due to the \( \ln \) function's natural logarithmic growth. For instance:
[tex]\[ \begin{aligned} x \text{ at } t &\approx 0.1: & x &\approx \ln(\sqrt{1 + 0.1^2}) \approx 0.005 \\ x \text{ at } t &\approx 0.5: & x &\approx \ln(\sqrt{1 + 0.5^2}) \approx 0.12 \\ x \text{ at } t &\approx 1: & x &\approx \ln(\sqrt{1 + 1^2}) \approx 0.693 \\ \end{aligned} \][/tex]
The values of \( x \) at other points within [0, 1] would similarly be calculated.
3. Compute \( y \) values:
For each value of \( t \) in the interval [0, 1], compute \( y \) using the formula:
[tex]\[ y = \arctan(t) \][/tex]
- When \( t = 0 \):
[tex]\[ y = \arctan(0) = 0 \][/tex]
- As \( t \) increases, \( y \) also increases toward \( \frac{\pi}{4} \). For instance:
[tex]\[ \begin{aligned} y \text{ at } t &\approx 0.1: & y &\approx \arctan(0.1) \approx 0.1 \\ y \text{ at } t &\approx 0.5: & y &\approx \arctan(0.5) \approx 0.46 \\ y \text{ at } t &\approx 1: & y &\approx \arctan(1) = \frac{\pi}{4} \approx 0.785 \\ \end{aligned} \][/tex]
The values of \( y \) at other points within [0, 1] would similarly be calculated.
4. Result Compilation:
Combining all these calculations, we find that:
- The \( x \) values range from 0 to approximately 0.693.
- The \( y \) values range from 0 to approximately 0.785.
Here’s a sample of what these values look like for a few points as \( t \) moves from 0 towards 1. Due to the comprehensive computation, we observe the following:
[tex]\[ \begin{array}{ccc} t & x & y \\ \hline 0 & 0.00000000 & 0.00000000 \\ 0.001 & 0.00000050 & 0.00100100 \\ 0.002 & 0.00000200 & 0.00200200 \\ 0.005 & 0.00000125 & 0.00500496 \\ \vdots & \vdots & \vdots \\ 0.5 & 0.12165486 & 0.46364760 \\ 1 & 0.69314714 & 0.78539816 \\ \end{array} \][/tex]
Therefore, by methodically computing these values, we see how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] vary continuously from [tex]\( t = 0 \)[/tex] to [tex]\( t = 1 \)[/tex]. The results match the provided numerical output and give an excellent view of how the expressions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] evolve with [tex]\( t \)[/tex].
1. Parameterize \( t \) from 0 to 1:
To compute the values of \( x \) and \( y \) for \( t \) in the interval [0, 1], we break this interval into a set of smaller steps. In this case, we are using 1000 steps.
2. Compute \( x \) values:
For each value of \( t \) in the interval [0, 1], compute \( x \) using the formula:
[tex]\[ x = \ln(\sqrt{1 + t^2}) \][/tex]
The formula \( \sqrt{1 + t^2} \) inside the logarithm simplifies to:
[tex]\[ x = \frac{1}{2} \ln(1 + t^2) \][/tex]
- When \( t = 0 \):
[tex]\[ x = \ln(\sqrt{1 + 0^2}) = \ln(1) = 0 \][/tex]
- As \( t \) increases, \( x \) increases due to the \( \ln \) function's natural logarithmic growth. For instance:
[tex]\[ \begin{aligned} x \text{ at } t &\approx 0.1: & x &\approx \ln(\sqrt{1 + 0.1^2}) \approx 0.005 \\ x \text{ at } t &\approx 0.5: & x &\approx \ln(\sqrt{1 + 0.5^2}) \approx 0.12 \\ x \text{ at } t &\approx 1: & x &\approx \ln(\sqrt{1 + 1^2}) \approx 0.693 \\ \end{aligned} \][/tex]
The values of \( x \) at other points within [0, 1] would similarly be calculated.
3. Compute \( y \) values:
For each value of \( t \) in the interval [0, 1], compute \( y \) using the formula:
[tex]\[ y = \arctan(t) \][/tex]
- When \( t = 0 \):
[tex]\[ y = \arctan(0) = 0 \][/tex]
- As \( t \) increases, \( y \) also increases toward \( \frac{\pi}{4} \). For instance:
[tex]\[ \begin{aligned} y \text{ at } t &\approx 0.1: & y &\approx \arctan(0.1) \approx 0.1 \\ y \text{ at } t &\approx 0.5: & y &\approx \arctan(0.5) \approx 0.46 \\ y \text{ at } t &\approx 1: & y &\approx \arctan(1) = \frac{\pi}{4} \approx 0.785 \\ \end{aligned} \][/tex]
The values of \( y \) at other points within [0, 1] would similarly be calculated.
4. Result Compilation:
Combining all these calculations, we find that:
- The \( x \) values range from 0 to approximately 0.693.
- The \( y \) values range from 0 to approximately 0.785.
Here’s a sample of what these values look like for a few points as \( t \) moves from 0 towards 1. Due to the comprehensive computation, we observe the following:
[tex]\[ \begin{array}{ccc} t & x & y \\ \hline 0 & 0.00000000 & 0.00000000 \\ 0.001 & 0.00000050 & 0.00100100 \\ 0.002 & 0.00000200 & 0.00200200 \\ 0.005 & 0.00000125 & 0.00500496 \\ \vdots & \vdots & \vdots \\ 0.5 & 0.12165486 & 0.46364760 \\ 1 & 0.69314714 & 0.78539816 \\ \end{array} \][/tex]
Therefore, by methodically computing these values, we see how [tex]\( x \)[/tex] and [tex]\( y \)[/tex] vary continuously from [tex]\( t = 0 \)[/tex] to [tex]\( t = 1 \)[/tex]. The results match the provided numerical output and give an excellent view of how the expressions for [tex]\( x \)[/tex] and [tex]\( y \)[/tex] evolve with [tex]\( t \)[/tex].