To evaluate \(\frac{0.045 \times 0.0009}{0.003}\) and express the answer in standard form, follow these steps:
1. Evaluate the Product in the Numerator:
[tex]\[
0.045 \times 0.0009
\][/tex]
First, multiply the two numbers:
[tex]\[
0.045 \times 0.0009 = 0.0000405 = 4.05 \times 10^{-5}
\][/tex]
So, the intermediate product is \(4.05 \times 10^{-5}\).
2. Evaluate the Division:
[tex]\[
\frac{4.05 \times 10^{-5}}{0.003}
\][/tex]
Rewrite the denominator \(0.003\) in standard form:
[tex]\[
0.003 = 3 \times 10^{-3}
\][/tex]
So, the division becomes:
[tex]\[
\frac{4.05 \times 10^{-5}}{3 \times 10^{-3}} = \frac{4.05}{3} \times 10^{-5 + 3} = \frac{4.05}{3} \times 10^{-2}
\][/tex]
Now, compute the quotient:
[tex]\[
\frac{4.05}{3} = 1.35
\][/tex]
Therefore:
[tex]\[
1.35 \times 10^{-2}
\][/tex]
3. Express the Answer in Standard Form:
The final result expressed in standard (scientific) form is:
[tex]\[
1.35 \times 10^{-2}
\][/tex]
So, [tex]\(\frac{0.045 \times 0.0009}{0.003} = 1.35 \times 10^{-2}\)[/tex].