Answer :

To evaluate \(\frac{0.045 \times 0.0009}{0.003}\) and express the answer in standard form, follow these steps:

1. Evaluate the Product in the Numerator:
[tex]\[ 0.045 \times 0.0009 \][/tex]

First, multiply the two numbers:
[tex]\[ 0.045 \times 0.0009 = 0.0000405 = 4.05 \times 10^{-5} \][/tex]

So, the intermediate product is \(4.05 \times 10^{-5}\).

2. Evaluate the Division:
[tex]\[ \frac{4.05 \times 10^{-5}}{0.003} \][/tex]

Rewrite the denominator \(0.003\) in standard form:
[tex]\[ 0.003 = 3 \times 10^{-3} \][/tex]

So, the division becomes:
[tex]\[ \frac{4.05 \times 10^{-5}}{3 \times 10^{-3}} = \frac{4.05}{3} \times 10^{-5 + 3} = \frac{4.05}{3} \times 10^{-2} \][/tex]

Now, compute the quotient:
[tex]\[ \frac{4.05}{3} = 1.35 \][/tex]

Therefore:
[tex]\[ 1.35 \times 10^{-2} \][/tex]

3. Express the Answer in Standard Form:

The final result expressed in standard (scientific) form is:
[tex]\[ 1.35 \times 10^{-2} \][/tex]

So, [tex]\(\frac{0.045 \times 0.0009}{0.003} = 1.35 \times 10^{-2}\)[/tex].