Answered

Which expression is equivalent to [tex]$2x^2 - 2x + 7$[/tex]?

A. [tex](4x + 12) + (2x^2 - 6x + 5)[/tex]
B. [tex](x^2 - 5x + 13) + (x^2 + 3x - 6)[/tex]
C. [tex](4x^2 - 6x + 11) + (2x^2 - 4x + 4)[/tex]
D. [tex](5x^2 - 8x + 120) + (-3x^2 + 10x - 13)[/tex]



Answer :

Sure! Let's solve the problem step-by-step to find which expression is equivalent to \(2x^2 - 2x + 7\).

We need to check each given option by simplifying and combining their terms to see which one matches the target expression \(2x^2 - 2x + 7\).

1. Option 1:
[tex]\[ (4x + 12) + (2x^2 - 6x + 5) \][/tex]
Combine the terms:
[tex]\[ 4x + 12 + 2x^2 - 6x + 5 = 2x^2 - 2x + 17 \][/tex]
This simplifies to:
[tex]\[ 2x^2 - 2x + 17 \][/tex]
This does not match \(2x^2 - 2x + 7\).

2. Option 2:
[tex]\[ (x^2 - 5x + 13) + (x^2 + 3x - 6) \][/tex]
Combine the terms:
[tex]\[ x^2 - 5x + 13 + x^2 + 3x - 6 = 2x^2 - 2x + 7 \][/tex]
This simplifies to:
[tex]\[ 2x^2 - 2x + 7 \][/tex]
This matches \(2x^2 - 2x + 7\).

3. Option 3:
[tex]\[ (4x^2 - 6x + 11) + (2x^2 - 4x + 4) \][/tex]
Combine the terms:
[tex]\[ 4x^2 - 6x + 11 + 2x^2 - 4x + 4 = 6x^2 - 10x + 15 \][/tex]
This simplifies to:
[tex]\[ 6x^2 - 10x + 15 \][/tex]
This does not match \(2x^2 - 2x + 7\).

4. Option 4:
[tex]\[ (5x^2 - 8x + 120) + (-3x^2 + 10x - 13) \][/tex]
Combine the terms:
[tex]\[ 5x^2 - 8x + 120 - 3x^2 + 10x - 13 = 2x^2 + 2x + 107 \][/tex]
This simplifies to:
[tex]\[ 2x^2 + 2x + 107 \][/tex]
This does not match \(2x^2 - 2x + 7\).

Based on the calculations above, the expression that is equivalent to \(2x^2 - 2x + 7\) is:

[tex]\[ \left( x^2 - 5x + 13 \right) + \left( x^2 + 3x - 6 \right) \][/tex]

Therefore, the correct answer is Option 2.