Perform the indicated operation.

[tex]\[
\frac{(a+b)^2}{a-b} \cdot \frac{a^3 - b^3}{a^2 - b^2} \div \frac{a^2 + ab + b^2}{(a - b)^2} =
\][/tex]



Answer :

Let’s solve the given expression step by step:

Given:
[tex]\[ \frac{(a+b)^2}{a-b} \cdot \frac{a^3-b^3}{a^2-b^2} \div \frac{a^2+a b+b^2}{(a-b)^2} \][/tex]

Step 1: Simplify each expression separately.

1. Simplify \(\frac{(a+b)^2}{a-b}\).
[tex]\[ \frac{(a+b)^2}{a-b} = \frac{a^2 + 2ab + b^2}{a-b} \][/tex]

2. Simplify \(\frac{a^3 - b^3}{a^2 - b^2}\).

Recall the factorization formulas:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]

Therefore:
[tex]\[ \frac{a^3 - b^3}{a^2 - b^2} = \frac{(a - b)(a^2 + ab + b^2)}{(a - b)(a + b)} = \frac{a^2 + ab + b^2}{a + b} \][/tex]

3. Simplify \(\frac{a^2 + ab + b^2}{(a - b)^2}\).
[tex]\[ \frac{a^2 + ab + b^2}{(a - b)^2} \][/tex]

Step 2: Substitute these simplified expressions back into the original problem.

The original problem:
[tex]\[ \frac{(a+b)^2}{a-b} \cdot \frac{a^3 - b^3}{a^2 - b^2} \div \frac{a^2 + ab + b^2}{(a - b)^2} \][/tex]

becomes:
[tex]\[ \frac{a^2 + 2ab + b^2}{a-b} \cdot \frac{a^2 + ab + b^2}{a + b} \div \frac{a^2 + ab + b^2}{(a - b)^2} \][/tex]

Step 3: Convert the division to multiplication by the reciprocal:
[tex]\[ \frac{a^2 + 2ab + b^2}{a-b} \cdot \frac{a^2 + ab + b^2}{a + b} \cdot \frac{(a - b)^2}{a^2 + ab + b^2} \][/tex]

Step 4: Cancel out the common terms.

The terms \(a^2 + ab + b^2\) in the numerator and denominator will cancel out:
[tex]\[ \frac{a^2 + 2ab + b^2}{a-b} \cdot \frac{(a - b)^2}{a + b} \][/tex]

Now, it simplifies to:
[tex]\[ \frac{a^2 + 2ab + b^2}{a-b} \cdot \frac{(a - b)}{(a + b)} \][/tex]

[tex]\[ \frac{a^2 + 2ab + b^2}{(a + b)} \][/tex]

Finally:
[tex]\[ a^2 + 2ab + b^2 \][/tex]

The result is:
[tex]\[ a^2 - b^2 \][/tex]

Thus, the final simplified result is:
[tex]\[ \boxed{a^2 - b^2} \][/tex]