Given polynomials [tex] p [/tex], [tex] q [/tex], [tex] r [/tex], and [tex] s [/tex] such that [tex] q \neq 0 [/tex] and [tex] s \neq 0 [/tex],

[tex]\[ \frac{p}{q} \cdot \frac{r}{s} = \][/tex]



Answer :

To solve the given problem, we need to multiply the two fractions \(\frac{p}{q}\) and \(\frac{r}{s}\).

Here are the steps for multiplying fractions:

1. Identify the numerators and denominators:
- In the fraction \(\frac{p}{q}\), \(p\) is the numerator, and \(q\) is the denominator.
- In the fraction \(\frac{r}{s}\), \(r\) is the numerator, and \(s\) is the denominator.

2. Multiply the numerators together:
- Multiply \(p\) and \(r\). The result is \(p \cdot r\).

3. Multiply the denominators together:
- Multiply \(q\) and \(s\). The result is \(q \cdot s\).

4. Combine the results:
- Place the product of the numerators over the product of the denominators to form the new fraction.

Hence, the multiplication of \(\frac{p}{q} \cdot \frac{r}{s}\) is:

[tex]\[ \frac{p}{q} \cdot \frac{r}{s} = \frac{p \cdot r}{q \cdot s} \][/tex]

So, the final result is:

[tex]\[ \frac{p \cdot r}{q \cdot s} \][/tex]