Alright, let's determine whether the given ratios are proportional.
1. Calculate the first ratio:
[tex]\[
\frac{0.08}{0.2} = 0.4
\][/tex]
2. Calculate the second ratio:
[tex]\[
\frac{0.2}{0.8} = 0.25
\][/tex]
3. Compare the two ratios:
We have:
[tex]\[
0.4 \quad \text{and} \quad 0.25
\][/tex]
4. Determine if the ratios are equal:
Clearly,
[tex]\[
0.4 \neq 0.25
\][/tex]
Since the two ratios are not equal, the ratios \(\frac{0.08}{0.2}\) and \(\frac{0.2}{0.8}\) are Not Proportional.
Thus, in the table:
[tex]\[
\begin{tabular}{|l|c|c|}
\hline
& Proportional & Not Proportional \\
\hline
[tex]$\frac{0.08}{0.2}$[/tex] and [tex]$\frac{0.2}{0.8}$[/tex] & 0 & \bigcirc \\
\hline
\end{tabular}
\][/tex]
The ratios are correctly classified under "Not Proportional."