Answered

Solve for [tex]$p$[/tex].

[tex]\[
\frac{p-3.1}{6.7}=\frac{4.5}{5}
\][/tex]

A. [tex]$p = -9.47$[/tex]

B. [tex]$p = 2.93$[/tex]

C. [tex]$p = 9.13$[/tex]

D. [tex]$p = 21.53$[/tex]



Answer :

Sure! Let's solve the equation step-by-step to find the value of \( p \). Given the equation:
[tex]\[ \frac{p-3.1}{6.7} = \frac{4.5}{5} \][/tex]

First, we'll solve the right side of the equation:
[tex]\[ \frac{4.5}{5} = 0.9 \][/tex]

The equation now becomes:
[tex]\[ \frac{p-3.1}{6.7} = 0.9 \][/tex]

Next, we need to solve for \( p \). We can do this by isolating \( p \). First, multiply both sides of the equation by \( 6.7 \) to clear the denominator on the left side:
[tex]\[ p - 3.1 = 0.9 \cdot 6.7 \][/tex]

Calculate \( 0.9 \cdot 6.7 \):
[tex]\[ 0.9 \cdot 6.7 = 6.03 \][/tex]

Now the equation is:
[tex]\[ p - 3.1 = 6.03 \][/tex]

To isolate \( p \), add \( 3.1 \) to both sides of the equation:
[tex]\[ p = 6.03 + 3.1 \][/tex]

Perform the addition:
[tex]\[ p = 9.13 \][/tex]

So, the solution is:
[tex]\[ p = 9.13 \][/tex]

Let's check the given possible values of \( p \):
1. \( p = -9.47 \)
2. \( p = 2.93 \)
3. \( p = 9.13 \)
4. \( p = 21.53 \)

The value that matches our solution is [tex]\( p = 9.13 \)[/tex]. Thus, the correct value of [tex]\( p \)[/tex] is [tex]\( 9.13 \)[/tex].