1. Simplify: \(2 \times (7 + 5) + 3\)

2. Simplify: \(4 \times (5 \times 2) + (7 \times 2) = (3 \times 5) + 45\)

3. Simplify: \(8 \times (9 - 6) - (10 - 5)\)

4. Simplify: [tex]\(10 \times 6 + 7 \times 10 - 70 \times 0 + 4\)[/tex]



Answer :

Alright, let's solve each expression step by step:

1. Expression: \(2 \times (7 + 5) + 3\)
- First, calculate the value inside the parentheses: \(7 + 5 = 12\).
- Next, multiply the result by 2: \(2 \times 12 = 24\).
- Finally, add 3 to the result: \(24 + 3 = 27\).

So, \(2 \times (7 + 5) + 3 = 27\).

2. Expression: \(4 \times (5 \times 2) + (7 \times 2) = (3 \times 5) + 45\)
- First, simplify both sides of the equation independently to check for equality.
- Left side:
- Calculate inside the parentheses: \(5 \times 2 = 10\).
- Then, multiply by 4: \(4 \times 10 = 40\).
- Add the product of \(7 \times 2\): \(40 + 14 = 54\).
- Right side:
- Calculate the products separately: \(3 \times 5 = 15\) and just add 45.
- Add them together: \(15 + 45 = 60\).
- Now compare both sides: \(54 \neq 60\).

Therefore, the equation \(4 \times (5 \times 2) + (7 \times 2) \neq (3 \times 5) + 45\) is False.

3. Expression: \(8 \times (9 - 6) - (10 - 5)\)
- First, calculate the values inside the parentheses:
- \(9 - 6 = 3\)
- \(10 - 5 = 5\)
- Next, multiply by 8: \(8 \times 3 = 24\).
- Finally, subtract the second result: \(24 - 5 = 19\).

So, \(8 \times (9 - 6) - (10 - 5) = 19\).

4. Expression: \(10 \times 6 + 7 \times 10 - 70 \times 0 + 4\)
- First, calculate each multiplication:
- \(10 \times 6 = 60\)
- \(7 \times 10 = 70\)
- \(70 \times 0 = 0\)
- Next, add all the results: \(60 + 70 + 0 + 4 = 134\).

So, \(10 \times 6 + 7 \times 10 - 70 \times 0 + 4 = 134\).

In summary:
1. \(2 \times (7 + 5) + 3 = 27\)
2. \(4 \times (5 \times 2) + (7 \times 2) \neq (3 \times 5) + 45\) is False
3. \(8 \times (9 - 6) - (10 - 5) = 19\)
4. [tex]\(10 \times 6 + 7 \times 10 - 70 \times 0 + 4 = 134\)[/tex]