Answer :

Sure, let's solve the given equation step by step:

The given equation is:
[tex]\[ x - 3 + \sqrt{y + 2} = -1 + \sqrt{3} \][/tex]

### Step 1: Rearrange the equation to isolate \(\sqrt{y+2}\)

First, we want to isolate the term involving the square root. Let's move \(x - 3\) to one side and \(-1 + \sqrt{3}\) to the other side:
[tex]\[ \sqrt{y + 2} = -1 + \sqrt{3} - (x - 3) \][/tex]
[tex]\[ \sqrt{y + 2} = \sqrt{3} - x + 2 \][/tex]

### Step 2: Solve for \(x\)

To solve for \(x\), we can set it as:
[tex]\[ x = 3 - 1 + \sqrt{3} \][/tex]
[tex]\[ x = 2 + \sqrt{3} \][/tex]

### Step 3: Simplify the equation for \(y\)

Substitute \(x = 2 + \sqrt{3}\) back into the equation.
[tex]\[ \sqrt{y + 2} = \sqrt{3} - (2 + \sqrt{3}) + 2 \][/tex]

This simplifies to:
[tex]\[ \sqrt{y + 2} = \sqrt{3} - 2 - \sqrt{3} + 2 \][/tex]
[tex]\[ \sqrt{y + 2} = 0 \][/tex]

Square both sides to eliminate the square root:
[tex]\[ y + 2 = 0 \][/tex]
[tex]\[ y = -2 \][/tex]

### Step 4: Conclusion

The value of \(x\) is:
[tex]\[ x = 2 + \sqrt{3} \][/tex]

The value of \(y\) is:
[tex]\[ y = -2 \][/tex]

Thus, the final solution is:
[tex]\[ x = 3.73205080756888 \][/tex]
[tex]\[ y = -2 \][/tex]