Suppose [tex]$y^{\prime}=t^4[tex]$[/tex] and [tex]$[/tex]y(0)=3[tex]$[/tex]. Then the correct formula for the function [tex]$[/tex]y=f(t)$[/tex] is:

A. [tex]\frac{t^3}{3}[/tex]
B. [tex]\frac{t^3}{5}+3[/tex]
C. [tex]t^3-3[/tex]
D. [tex]t^5+3[/tex]
E. [tex]t^3+3[/tex]



Answer :

Let us solve the given differential equation step-by-step to find the correct formula for the function \( y = f(t) \).

We are given:
[tex]\[ y' = t^4 \][/tex]
[tex]\[ y(0) = 3 \][/tex]

First, we need to find the general solution to the differential equation by integrating \( y' \).

[tex]\[ y = \int t^4 \, dt \][/tex]

Using the power rule of integration, we can integrate \( t^4 \):

[tex]\[ y = \frac{t^5}{5} + C \][/tex]

Where \( C \) is the constant of integration.

Next, we use the initial condition \( y(0) = 3 \) to find the value of \( C \):

[tex]\[ y(0) = \frac{0^5}{5} + C = 3 \][/tex]
[tex]\[ C = 3 \][/tex]

Thus, the particular solution to the differential equation is:

[tex]\[ y = \frac{t^5}{5} + 3 \][/tex]

Now we check if any of the given options match this solution:

1. \(\frac{t^3}{3}\)
2. \(\frac{t^3}{5} + 3\)
3. \(t^3 - 3\)
4. \(t^5 + 3\)
5. \(t^3 + 3\)

Our particular solution \( \frac{t^5}{5} + 3 \) does not match any of the given options.

Thus, the correct result is none of the given formulas match the derived function [tex]\( y = \frac{t^5}{5} + 3 \)[/tex].