A binomial probability experiment is conducted with the following parameters:

[tex]\[
\begin{aligned}
n &= 30, \\
p &= 0.97, \\
x &= 28
\end{aligned}
\][/tex]

Calculate [tex]\( P(28) \)[/tex].



Answer :

Sure, let’s find the probability \(P(X = 28)\) in a binomial distribution given the parameters \( n = 30 \), \( p = 0.97 \), and \( x = 28\).

We will use the binomial probability formula:

[tex]\[ P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \][/tex]

where:
- \( \binom{n}{x} \) is the binomial coefficient
- \( p \) is the probability of success on a single trial
- \( 1-p \) is the probability of failure on a single trial

1. Calculate the binomial coefficient \( \binom{n}{x} \):
[tex]\[ \binom{30}{28} = \frac{30!}{28! \cdot (30-28)!} = \frac{30 \times 29}{2 \times 1} = 435 \][/tex]

2. Calculate \( p^x \):
[tex]\[ p = 0.97, \quad x = 28 \][/tex]
[tex]\[ p^x = 0.97^{28} = 0.42619520516862314 \][/tex]

3. Calculate \( (1-p)^{n-x} \):
[tex]\[ 1-p = 0.03, \quad n-x = 30-28 = 2 \][/tex]
[tex]\[ (1-p)^{n-x} = 0.03^2 = 0.0009000000000000016 \][/tex]

4. Combine these values to find the binomial probability \( P(X = 28) \):
[tex]\[ P(X = 28) = \binom{30}{28} \cdot 0.97^{28} \cdot 0.03^2 \][/tex]
[tex]\[ P(X = 28) = 435 \times 0.42619520516862314 \times 0.0009000000000000016 \][/tex]
[tex]\[ P(X = 28) = 0.16685542282351626 \][/tex]

Therefore, the probability [tex]\( P(X = 28) \)[/tex] is approximately [tex]\( 0.1669 \)[/tex].