Answer :

Sure, let's simplify the given expression step by step.

We start with the expression:

[tex]\[ 2b^2(3b^2 + b - 17) \][/tex]

### Step 1: Distribute \( 2b^2 \) through the expression inside the parentheses.

First, multiply \( 2b^2 \) by each term inside the parentheses individually:

1. \( 2b^2 \cdot 3b^2 \):
[tex]\[ = 6b^4 \][/tex]
2. \( 2b^2 \cdot b \):
[tex]\[ = 2b^3 \][/tex]
3. \( 2b^2 \cdot (-17) \):
[tex]\[ = -34b^2 \][/tex]

### Step 2: Combine the results.

After multiplying, we combine all the terms together:

[tex]\[6b^4 + 2b^3 - 34b^2\][/tex]

### Step 3: Identify the coefficients and other requested details.

From our simplified expression \( 6b^4 + 2b^3 - 34b^2 \), we can see:

1. The power of the highest degree term (\(b\)) is \(4\). Therefore, \( 6b^{[4]} \).
2. The coefficient of the \(b^3\) term is \(2\).
3. Notice that there is no \(b\) term in the simplified expression, so its coefficient is \(0\).

### Conclusion:

The simplified form of the expression is:
[tex]\[ 6b^4 + 2b^3 - 34b^2 \][/tex]

In the expression given in the question:

[tex]\[ 6b^{[4]} + \square b^3 - \square b \][/tex]

It translates to:
[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]

Thus:

[tex]\[ 6b^{[4]} + 2b^3 - 0b \][/tex]