Simplify the following expression.

[tex]\[
\begin{array}{l}
(x + 2)(2x + 5) \\
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
x^2 + \square x + \square
\end{array}
\][/tex]



Answer :

To simplify the expression \((x + 2)(2x + 5)\), we can use the distributive property (also known as the FOIL method for binomials). The steps are as follows:

1. First, multiply the first terms in each binomial:
[tex]\[ x \cdot 2x = 2x^2 \][/tex]

2. Outer, multiply the outer terms:
[tex]\[ x \cdot 5 = 5x \][/tex]

3. Inner, multiply the inner terms:
[tex]\[ 2 \cdot 2x = 4x \][/tex]

4. Last, multiply the last terms:
[tex]\[ 2 \cdot 5 = 10 \][/tex]

Next, combine all these products:
[tex]\[ 2x^2 + 5x + 4x + 10 \][/tex]

Now, combine the like terms \(5x\) and \(4x\):
[tex]\[ 2x^2 + 9x + 10 \][/tex]

Thus, the simplified expression is:
[tex]\[ 2x^2 + 9x + 10 \][/tex]

Therefore, the coefficients for the simplified expression \(2x^2 + 9x + 10\) are:
[tex]\[ \boxed{2} \][/tex]
[tex]\[ \boxed{9} \][/tex]
[tex]\[ \boxed{10} \][/tex]