Certainly! Let's simplify the given expression step-by-step:
The expression to simplify is:
[tex]\[
(x + 3)^2
\][/tex]
To simplify \((x + 3)^2\), we can use the formula for the square of a binomial:
[tex]\[
(a + b)^2 = a^2 + 2ab + b^2
\][/tex]
Here, \(a = x\) and \(b = 3\). Applying the formula, we get:
[tex]\[
(x + 3)^2 = x^2 + 2(x)(3) + 3^2
\][/tex]
Now, let's compute each term individually:
1. \(a^2\), where \(a = x\):
[tex]\[
x^2
\][/tex]
2. \(2ab\), where \(a = x\) and \(b = 3\):
[tex]\[
2(x)(3) = 6x
\][/tex]
3. \(b^2\), where \(b = 3\):
[tex]\[
3^2 = 9
\][/tex]
Putting it all together, we have:
[tex]\[
(x + 3)^2 = x^2 + 6x + 9
\][/tex]
Hence, the simplified form of the expression \((x + 3)^2\) is:
[tex]\[
x^2 + 6x + 9
\][/tex]