Answer :

To find the exact values of the given trigonometric expressions, we can use angle addition formulas for cosine.

1. Calculating \(\cos \left(\frac{5 \pi}{12}\right)\):

Let's break down \(\frac{5 \pi}{12}\) in terms of simpler known angles.

We know:
[tex]\[ \frac{5 \pi}{12} = \frac{\pi}{3} + \frac{\pi}{4} \][/tex]

We will use the cosine addition formula:
[tex]\[ \cos(A + B) = \cos A \cos B - \sin A \sin B \][/tex]

Here, \(A = \frac{\pi}{3}\) and \(B = \frac{\pi}{4}\).

We know the cosine and sine values for these angles:
[tex]\[ \cos \left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin \left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \cos \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]

Substituting these values into the cosine addition formula:
[tex]\[ \cos \left(\frac{\pi}{3} + \frac{\pi}{4}\right) = \cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{4}\right) - \sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{4}\right) \][/tex]
[tex]\[ = \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \][/tex]
[tex]\[ = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} \][/tex]
[tex]\[ = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]

Thus,
[tex]\[ \cos \left(\frac{5 \pi}{12}\right) = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]

2. Calculating \(\cos \left(105^\circ\right)\):

We know that \(105^\circ\) can be expressed as \(60^\circ + 45^\circ\).

We use the same cosine addition formula:
[tex]\[ \cos (A + B) = \cos A \cos B - \sin A \sin B \][/tex]

Here, \(A = 60^\circ\) and \(B = 45^\circ\).

We know the cosine and sine values for these angles:
[tex]\[ \cos (60^\circ) = \frac{1}{2}, \quad \sin (60^\circ) = \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ \cos (45^\circ) = \frac{\sqrt{2}}{2}, \quad \sin (45^\circ) = \frac{\sqrt{2}}{2} \][/tex]

Substituting these values into the cosine addition formula:
[tex]\[ \cos (60^\circ + 45^\circ) = \cos (60^\circ) \cos (45^\circ) - \sin (60^\circ) \sin (45^\circ) \][/tex]
[tex]\[ = \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right) - \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) \][/tex]
[tex]\[ = \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} \][/tex]
[tex]\[ = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]

Thus,
[tex]\[ \cos (105^\circ) = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]

In summary:
[tex]\[ \cos \left(\frac{5\pi}{12}\right) = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]
[tex]\[ \cos (105^\circ) = -\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} \][/tex]