Which set of numbers gives the correct possible values of [tex]l[/tex] for [tex]n=3[/tex]?

A. [tex]0, 1, 2[/tex]
B. [tex]0, 1, 2, 3[/tex]
C. [tex]-2, -1, 0, 1, 2[/tex]
D. [tex]-3, -2, -1, 0, 1, 2, 3[/tex]



Answer :

To determine the correct possible values for \( n = 3 \), we need to establish the set of integers ranging from \(-n\) to \(+n\).

Here’s a step-by-step solution:

1. Identify the Value of \( n \):
Given that \( n = 3 \).

2. Determine the Range of Values:
The range of integers that includes all possible values from \(-n\) to \(+n\) needs to be listed. For \( n = 3 \), this means listing all integers from \(-3\) to \(3\).

3. List All Integers in the Range:
The integers from \(-3\) to \(3\) are as follows:
[tex]\[ -3, -2, -1, 0, 1, 2, 3 \][/tex]

4. Review the Options:
Now, we compare the calculated set \(\{-3, -2, -1, 0, 1, 2, 3\}\) with the given options:
- \(0, 1, 2\)
- \(0, 1, 2, 3\)
- \(-2, -1, 0, 1, 2\)
- \(-3, -2, -1, 0, 1, 2, 3\)

5. Select the Correct Option:
The set that matches our calculated values exactly from \(-3\) to \(3\) is:
[tex]\[\{-3, -2, -1, 0, 1, 2, 3\}\][/tex]

Thus, the correct set of numbers that gives the correct possible values for \( n = 3 \) is:
[tex]\(\boxed{-3, -2, -1, 0, 1, 2, 3}\)[/tex]