Answer :
Let's solve the expression \(4 \cdot f(6) - 6 \cdot g(5)\) step-by-step:
1. Identify the values of the functions:
- We are given \(f(6) = 6\).
- We are given \(g(5) = 5\).
2. Substitute the values into the expression:
- The expression is \(4 \cdot f(6) - 6 \cdot g(5)\).
- Substitute \(f(6) = 6\) into the expression: \(4 \cdot 6 - 6 \cdot g(5)\).
- Substitute \(g(5) = 5\) into the expression: \(4 \cdot 6 - 6 \cdot 5\).
3. Perform the arithmetic operations:
- Calculate \(4 \cdot 6\):
[tex]\[ 4 \cdot 6 = 24 \][/tex]
- Calculate \(6 \cdot 5\):
[tex]\[ 6 \cdot 5 = 30 \][/tex]
- Now, substitute these results back into the expression:
[tex]\[ 24 - 30 \][/tex]
4. Simplify the final result:
- Perform the subtraction:
[tex]\[ 24 - 30 = -6 \][/tex]
Therefore, the value of [tex]\(4 \cdot f(6) - 6 \cdot g(5)\)[/tex] is [tex]\(-6\)[/tex].
1. Identify the values of the functions:
- We are given \(f(6) = 6\).
- We are given \(g(5) = 5\).
2. Substitute the values into the expression:
- The expression is \(4 \cdot f(6) - 6 \cdot g(5)\).
- Substitute \(f(6) = 6\) into the expression: \(4 \cdot 6 - 6 \cdot g(5)\).
- Substitute \(g(5) = 5\) into the expression: \(4 \cdot 6 - 6 \cdot 5\).
3. Perform the arithmetic operations:
- Calculate \(4 \cdot 6\):
[tex]\[ 4 \cdot 6 = 24 \][/tex]
- Calculate \(6 \cdot 5\):
[tex]\[ 6 \cdot 5 = 30 \][/tex]
- Now, substitute these results back into the expression:
[tex]\[ 24 - 30 \][/tex]
4. Simplify the final result:
- Perform the subtraction:
[tex]\[ 24 - 30 = -6 \][/tex]
Therefore, the value of [tex]\(4 \cdot f(6) - 6 \cdot g(5)\)[/tex] is [tex]\(-6\)[/tex].