a) Solve for [tex]$x[tex]$[/tex] and [tex]$[/tex]y[tex]$[/tex] in the equation [tex]$[/tex]5x - 6y = 25$[/tex].

Given: [tex]$x = 10, y = ?$[/tex]



Answer :

To solve the equation \(5x - 6y = 25\) given \(x = 10\) and \(y = 10\), we can follow these steps:

1. Substitute the value of \(x\) into the equation.
[tex]\[ 5(10) - 6y = 25 \][/tex]

2. Simplify the multiplication within the equation.
[tex]\[ 50 - 6y = 25 \][/tex]

3. Substitute the value of \(y\) into the simplified equation.
[tex]\[ 50 - 6(10) = 25 \][/tex]

4. Simplify the multiplication within the equation.
[tex]\[ 50 - 60 = 25 \][/tex]

5. Simplify the subtraction to find the resulting value.
[tex]\[ -10 = 25 \][/tex]

So, when we substitute [tex]\(x = 10\)[/tex] and [tex]\(y = 10\)[/tex] into the equation [tex]\(5x - 6y = 25\)[/tex], the calculated result is [tex]\(-10\)[/tex].