Consider the chemical equations shown here.
[tex]\[
\begin{array}{l}
P_4(s) + 3O_2(g) \rightarrow P_4O_6(s) \\
P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)
\end{array}
\][/tex]

What is the overall equation for the reaction that produces \( P_4O_{10} \) from \( P_4O_6 \) and \( O_2 \)?

A. \( P_4O_6(s) + O_2(g) \rightarrow P_4O_{10}(s) \)

B. \( P_4O_6(s) + 2O_2(g) \rightarrow P_4O_{10}(s) \)

C. [tex]\( P_4O_6(s) + 8O_2(g) \rightarrow P_4O_{10}(s) \)[/tex]



Answer :

To determine the overall equation for the reaction that produces \(P_4O_{10}\) from \(P_4O_6\) and \(O_2\), we need to follow these steps:

1. Identify the Given Equations:
[tex]\[ \begin{array}{l} P_4(s) + 3 O_2(g) \rightarrow P_4O_6(s) \\ P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) \end{array} \][/tex]

2. Determine the Chemical Equation to Combine:
We need \(P_4O_6\) and \(O_2\) as reactants, resulting in \(P_4O_{10}\) as a product. To do so, we should subtract the first equation from the second one.

3. Balance the Reactants and Products:
On subtracting the first equation from the second:
Cancel out the common reactant \(P_4(s)\)
Adjust the \(O_2(g)\) molecules and the corresponding products.

First reaction:
[tex]\[ P_4(s) + 3 O_2(g) \rightarrow P_4O_6(s) \][/tex]

Second reaction:
[tex]\[ P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]

Subtract the coefficients of the first reactants from the reactants of the second:
[tex]\[ P_4(s) + 5 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]
Minus:
[tex]\[ P_4(s) + 3 O_2(g) \rightarrow P_4O_6(s) \][/tex]

This gives:
[tex]\[ (5 O_2(g) - 3 O_2(g)) \rightarrow P_4O_{10}(s) - P_4O_6(s) \][/tex]
Simplifies to:
[tex]\[ 2 O_2(g) + P_4O_6(s) \rightarrow P_4O_{10}(s) \][/tex]

4. Conclusion:
The overall chemical equation that produces \(P_4O_{10}\) from \(P_4O_6\) and \(O_2\) becomes:
[tex]\[ P_4O_6(s) + 2 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]

Therefore, the correct equation is:
[tex]\[ P_4O_6(s) + 2 O_2(g) \rightarrow P_4O_{10}(s) \][/tex]