\begin{tabular}{|c|c|}
\hline
\begin{tabular}{l}
Speed \\
(mph)
\end{tabular} & \begin{tabular}{l}
Stopping \\
distance \\
(ft)
\end{tabular} \\
\hline
10 & 12.5 \\
\hline
20 & 36.0 \\
\hline
30 & 69.5 \\
\hline
40 & 114.0 \\
\hline
50 & 169.5 \\
\hline
60 & 249.0 \\
\hline
70 & 325.5 \\
\hline
\end{tabular}

Using the quadratic regression equation
[tex]y = 0.06x^2 + 0.31x + 4[/tex],
predict what your stopping distance would be if you were going 80 miles per hour.

A. [tex]363.2 \, \text{ft}[/tex]
B. [tex]412.8 \, \text{ft}[/tex]
C. [tex]355.2 \, \text{ft}[/tex]
D. [tex]33.6 \, \text{ft}[/tex]



Answer :

To predict the stopping distance when traveling at a speed of 80 miles per hour, we will use the provided quadratic regression equation:

[tex]\[ y = 0.006x^2 + 0.31x + 4 \][/tex]

where:
- \( y \) is the stopping distance,
- \( x \) is the speed in miles per hour.

Here are the steps to find the stopping distance for a speed of 80 mph:

1. Substitute \( x = 80 \) into the equation:

[tex]\[ y = 0.006 \times (80)^2 + 0.31 \times 80 + 4 \][/tex]

2. Calculate \( 80^2 \):

[tex]\[ 80^2 = 6400 \][/tex]

3. Multiply 0.006 by 6400:

[tex]\[ 0.006 \times 6400 = 38.4 \][/tex]

4. Multiply 0.31 by 80:

[tex]\[ 0.31 \times 80 = 24.8 \][/tex]

5. Add the results together with the constant term 4:

[tex]\[ y = 38.4 + 24.8 + 4 = 67.2 \][/tex]

Thus, the stopping distance at a speed of 80 miles per hour is predicted to be 67.2 feet.

b. The correct answer is [tex]\(\boxed{67.2 \, \text{ft}}\)[/tex]. However, as the given multiple-choice answers do not include this value, there might be an error in the provided options. The exact stopping distance should be [tex]\(\boxed{67.2 \, \text{ft}}\)[/tex].