Answer :
Certainly! Let's express the given numbers in their standard form (scientific notation).
### Part (a):
Convert 91220000000000 to standard form.
1. Identify the significant figure (the digits of the number, excluding trailing zeros):
[tex]\[ 91220000000000 \quad \text{becomes} \quad 9.122 \][/tex]
2. Count the number of places the decimal point would need to move to the left to get from 91220000000000 to 9.122:
[tex]\[ 91220000000000 = 9.122 \times 10^{13} \][/tex]
The decimal point moves 13 places to the left.
3. Write in standard form:
[tex]\[ 91220000000000 = 9.12 \times 10^{13} \][/tex]
### Part (b):
Convert \(\frac{24}{1000000}\) to standard form.
1. Perform the division:
[tex]\[ 24 \div 1000000 = 0.000024 \][/tex]
2. Identify the significant figures:
[tex]\[ 0.000024 \quad \text{becomes} \quad 2.4 \][/tex]
3. Count the number of places the decimal point would need to move to the right to get from 0.000024 to 2.4:
[tex]\[ 0.000024 = 2.4 \times 10^{-5} \][/tex]
The decimal point moves 5 places to the right.
4. Write in standard form:
[tex]\[ \frac{24}{1000000} = 2.40 \times 10^{-5} \][/tex]
So, the answers in standard form are:
a) \( 9.12 \times 10^{13} \)
b) [tex]\( 2.40 \times 10^{-5} \)[/tex]
### Part (a):
Convert 91220000000000 to standard form.
1. Identify the significant figure (the digits of the number, excluding trailing zeros):
[tex]\[ 91220000000000 \quad \text{becomes} \quad 9.122 \][/tex]
2. Count the number of places the decimal point would need to move to the left to get from 91220000000000 to 9.122:
[tex]\[ 91220000000000 = 9.122 \times 10^{13} \][/tex]
The decimal point moves 13 places to the left.
3. Write in standard form:
[tex]\[ 91220000000000 = 9.12 \times 10^{13} \][/tex]
### Part (b):
Convert \(\frac{24}{1000000}\) to standard form.
1. Perform the division:
[tex]\[ 24 \div 1000000 = 0.000024 \][/tex]
2. Identify the significant figures:
[tex]\[ 0.000024 \quad \text{becomes} \quad 2.4 \][/tex]
3. Count the number of places the decimal point would need to move to the right to get from 0.000024 to 2.4:
[tex]\[ 0.000024 = 2.4 \times 10^{-5} \][/tex]
The decimal point moves 5 places to the right.
4. Write in standard form:
[tex]\[ \frac{24}{1000000} = 2.40 \times 10^{-5} \][/tex]
So, the answers in standard form are:
a) \( 9.12 \times 10^{13} \)
b) [tex]\( 2.40 \times 10^{-5} \)[/tex]