Suppose there are two functions \( f \) and \( g \), whose values are defined by the table below. Calculate \( f(3) + f(2) \).

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
[tex]$x$[/tex] & 1 & 2 & 3 & 4 & [tex]$k$[/tex] & [tex]$Q$[/tex] \\
\hline
[tex]$f(x)$[/tex] & 12 & 3 & 1 & 2 & 4 & 7 \\
\hline
[tex]$g(x)$[/tex] & 11 & 2 & 4 & 1 & 8 & 7 \\
\hline
\end{tabular}
\][/tex]



Answer :

To solve the problem of finding \( f(3) + f(2) \) using the given table, let's walk through the steps carefully:

1. Identify \( f(3) \):
- We look at the row corresponding to \( f(x) \).
- Find the value of \( f(x) \) when \( x = 3 \):
[tex]\[ f(3) = 1 \][/tex]

2. Identify \( f(2) \):
- Again, we refer to the same row for \( f(x) \).
- Find the value of \( f(x) \) when \( x = 2 \):
[tex]\[ f(2) = 3 \][/tex]

3. Calculate \( f(3) + f(2) \):
- Add the values we found:
[tex]\[ f(3) + f(2) = 1 + 3 \][/tex]

4. Determine the result:
- The final calculation yields:
[tex]\[ f(3) + f(2) = 4 \][/tex]

Thus, the value of [tex]\( f(3) + f(2) \)[/tex] is [tex]\( 4 \)[/tex].