Answer :
Let's complete the table step by step.
We are given that 100% of the value is 90. We need to calculate 430% of this value. We'll break down the problem into smaller, manageable parts.
First, we see that 100% is 90:
[tex]\[ 100\% = 90 \][/tex]
Since the percent values provided in the table sum up to 430%, we consider:
- 100% + 100% + 100% + 100% + 30% = 430%
Using the provided values:
- Each 100% block is 90.
- Therefore, for four 100% blocks, it will be:
[tex]\[ 100\% + 100\% + 100\% + 100\% = 90 + 90 + 90 + 90 \][/tex]
Then we calculate:
[tex]\[ 4 \times 90 = 360 \][/tex]
Next, we need to find 30% of 90. We have:
[tex]\[ 30\% = A \][/tex]
We know from the answer that \(A = 27.0\).
Finally, summing up these values for 430%:
[tex]\[ 360 (from four 100\% blocks) + 27.0 (from 30\%) = 387 \][/tex]
Thus, the values to fill in the table are:
[tex]\[ A = 27.0 \][/tex]
[tex]\[ B = 387.0 \][/tex]
Therefore, the completed table looks like this:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{ Percent } & Total \\ \hline [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$30 \%$[/tex] & [tex]$430 \%$[/tex] \\
\hline 90 & 90 & 90 & 90 & 27.0 & 387.0 \\
\hline
\end{tabular}
\][/tex]
So, the values for [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(27.0\)[/tex] and [tex]\(387.0\)[/tex] respectively.
We are given that 100% of the value is 90. We need to calculate 430% of this value. We'll break down the problem into smaller, manageable parts.
First, we see that 100% is 90:
[tex]\[ 100\% = 90 \][/tex]
Since the percent values provided in the table sum up to 430%, we consider:
- 100% + 100% + 100% + 100% + 30% = 430%
Using the provided values:
- Each 100% block is 90.
- Therefore, for four 100% blocks, it will be:
[tex]\[ 100\% + 100\% + 100\% + 100\% = 90 + 90 + 90 + 90 \][/tex]
Then we calculate:
[tex]\[ 4 \times 90 = 360 \][/tex]
Next, we need to find 30% of 90. We have:
[tex]\[ 30\% = A \][/tex]
We know from the answer that \(A = 27.0\).
Finally, summing up these values for 430%:
[tex]\[ 360 (from four 100\% blocks) + 27.0 (from 30\%) = 387 \][/tex]
Thus, the values to fill in the table are:
[tex]\[ A = 27.0 \][/tex]
[tex]\[ B = 387.0 \][/tex]
Therefore, the completed table looks like this:
[tex]\[ \begin{tabular}{|c|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{ Percent } & Total \\ \hline [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$100 \%$[/tex] & [tex]$30 \%$[/tex] & [tex]$430 \%$[/tex] \\
\hline 90 & 90 & 90 & 90 & 27.0 & 387.0 \\
\hline
\end{tabular}
\][/tex]
So, the values for [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are [tex]\(27.0\)[/tex] and [tex]\(387.0\)[/tex] respectively.