What is the simplified form of the following expression? Assume [tex]$x \neq 0$[/tex].

A. [tex]\sqrt[5]{\frac{10 x}{3 x^3}}[/tex]
B. [tex]\frac{\sqrt[5]{10 x}}{3 x}[/tex]
C. [tex]\frac{\sqrt[5]{30}}{3 x}[/tex]
D. [tex]\frac{\sqrt[5]{120 x^3}}{3 x}[/tex]
E. [tex]\frac{\sqrt[5]{810 x^3}}{3 x}[/tex]



Answer :

Let's simplify the given expression step-by-step:
[tex]\[ \sqrt[5]{\frac{10 x}{3 x^3}} \][/tex]

1. Simplify the expression inside the 5th root:

Observe that the original expression inside the fifth root is a fraction:
[tex]\[ \frac{10 x}{3 x^3} \][/tex]

2. Simplify the fraction:

We can simplify the fraction by combining like terms:
[tex]\[ \frac{10 x}{3 x^3} = \frac{10}{3} \cdot \frac{x}{x^3} \][/tex]

Recall that we can further simplify \(\frac{x}{x^3}\) using the properties of exponents:
[tex]\[ \frac{x}{x^3} = x^{1-3} = x^{-2} \][/tex]

Thus, the simplified fraction becomes:
[tex]\[ \frac{10 x}{3 x^3} = \frac{10}{3} \cdot x^{-2} = \frac{10}{3 x^2} \][/tex]

3. Apply the 5th root to the simplified fraction:

Now, we take the fifth root of the simplified expression:
[tex]\[ \sqrt[5]{\frac{10}{3 x^2}} \][/tex]

4. Simplify further by splitting the fraction under the 5th root:

We can apply the fifth root to both the numerator and the denominator separately:
[tex]\[ \sqrt[5]{\frac{10}{3 x^2}} = \frac{\sqrt[5]{10}}{\sqrt[5]{3 x^2}} \][/tex]

5. Simplify the denominator by applying the 5th root:

Split the fifth root further in the denominator:
[tex]\[ \sqrt[5]{3 x^2} = \sqrt[5]{3} \cdot \sqrt[5]{x^2} \][/tex]

Using the properties of exponents, we know:
[tex]\[ \sqrt[5]{x^2} = x^{2/5} \][/tex]

So, the denominator becomes:
[tex]\[ \sqrt[5]{3 x^2} = 3^{1/5} \cdot x^{2/5} \][/tex]

6. Final simplified form:

Now, place the simplified numerator and denominator together:
[tex]\[ \frac{\sqrt[5]{10}}{3^{1/5} \cdot x^{2/5}} \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ \frac{\sqrt[5]{10}}{3^{1/5} \cdot x^{2/5}} \][/tex]