Which of these values for [tex]$P[tex]$[/tex] and [tex]$[/tex]a[tex]$[/tex] will cause the function [tex]$[/tex]f(x) = P a^x$[/tex] to be an exponential growth function?

A. [tex]$P=3 ; a=\frac{1}{4}$[/tex]

B. [tex]$P=3 ; a=1$[/tex]

C. [tex]$P=\frac{1}{3} ; a=4$[/tex]

D. [tex]$P=\frac{1}{3} ; a=\frac{1}{4}$[/tex]



Answer :

To determine which pair of \( P \) and \( a \) will cause the function \( f(x) = P \cdot a^x \) to be an exponential growth function, we need to evaluate the properties of exponential functions.

For a function to be classified as an exponential growth function, the base \( a \) must be greater than 1. An exponential growth function increases as \( x \) increases, and this happens only if \( a > 1 \).

Now, let's evaluate each option:

Option A: \( P = 3 \) and \( a = \frac{1}{4} \)

- Here, the base \( a = \frac{1}{4} \).
- Since \( \frac{1}{4} < 1 \), this function \( f(x) = 3 \cdot (\frac{1}{4})^x \) is not an exponential growth function.

Option B: \( P = 3 \) and \( a = 1 \)

- Here, the base \( a = 1 \).
- Since \( 1 \) is not greater than \( 1 \) (it is equal to 1), the function \( f(x) = 3 \cdot 1^x \) is not an exponential growth function but rather a constant function.

Option C: \( P = \frac{1}{3} \) and \( a = 4 \)

- Here, the base \( a = 4 \).
- Since \( 4 > 1 \), this function \( f(x) = \frac{1}{3} \cdot 4^x \) is an exponential growth function.

Option D: \( P = \frac{1}{3} \) and \( a = \frac{1}{4} \)

- Here, the base \( a = \frac{1}{4} \).
- Since \( \frac{1}{4} < 1 \), this function \( f(x) = \frac{1}{3} \cdot (\frac{1}{4})^x \) is not an exponential growth function.

Therefore, the pair \( P = \frac{1}{3} \) and \( a = 4 \) in Option C is the only one that causes \( f(x) \) to be an exponential growth function.

So, the correct answer is:

C. [tex]\( P = \frac{1}{3} \)[/tex] and [tex]\( a = 4 \)[/tex]