Which expression is equivalent to [tex]\log _2 9 x^3[/tex]?

A. [tex]\log _2 9+3 \log _2 x[/tex]

B. [tex]\log _2 x+3 \log _2 9[/tex]

C. [tex]3 \log _2 x-\log _2 9[/tex]

D. [tex]3 \log _2 9-\log _2 x[/tex]



Answer :

To determine which expression is equivalent to \(\log_2 (9x^3)\), we can use the properties of logarithms.

1. Product Rule of Logarithms: \(\log_b (MN) = \log_b M + \log_b N\)

Applying the product rule to \(\log_2 (9x^3)\):
[tex]\[ \log_2 (9x^3) = \log_2 9 + \log_2 x^3 \][/tex]

2. Power Rule of Logarithms: \(\log_b (M^k) = k \log_b M\)

Applying the power rule to \(\log_2 x^3\):
[tex]\[ \log_2 x^3 = 3 \log_2 x \][/tex]

Now, substitute back into the equation from the product rule:
[tex]\[ \log_2 (9x^3) = \log_2 9 + 3 \log_2 x \][/tex]

Therefore, the expression equivalent to \(\log_2 (9x^3)\) is:
[tex]\[ \log_2 9 + 3 \log_2 x \][/tex]

Hence, the correct answer is:
[tex]\[ \log_2 9 + 3 \log_2 x \][/tex]