Triangle [tex]$A B C$[/tex] is a right triangle and [tex]$\cos \left(22.6^{\circ}\right) = \frac{b}{13}$[/tex].

1. Solve for [tex][tex]$b$[/tex][/tex] and round to the nearest whole number.

2. Which equation correctly uses the value of [tex]$b$[/tex] to solve for [tex]$a$[/tex]?

A. [tex]$\tan \left(22.6^{\circ}\right) = \frac{a}{13}$[/tex]

B. [tex][tex]$\tan \left(22.6^{\circ}\right) = \frac{13}{a}$[/tex][/tex]

C. [tex]$\tan \left(22.6^{\circ}\right) = \frac{a}{12}$[/tex]

D. [tex]$\tan \left(22.6^{\circ}\right) = \frac{12}{a}$[/tex]



Answer :

To solve for [tex]\( b \)[/tex] given that [tex]\( \cos(22.6^\circ) = \frac{b}{13} \)[/tex], and given that the hypotenuse of the right triangle is 13, we can follow these steps:

1. Find [tex]\( b \)[/tex] using the cosine function:
[tex]\[ \cos(22.6^\circ) = \frac{b}{13} \][/tex]
To isolate [tex]\( b \)[/tex], multiply both sides by 13:
[tex]\[ b = 13 \cdot \cos(22.6^\circ) \][/tex]

2. The value of [tex]\( \cos(22.6^\circ) \)[/tex] is calculated and then multiplied by 13 to find the precise value of [tex]\( b \)[/tex]:
[tex]\[ b \approx 12.001732822468751 \][/tex]

3. Round [tex]\( b \)[/tex] to the nearest whole number:
[tex]\[ b = 12 \][/tex]

Now that we have found [tex]\( b = 12 \)[/tex], let's determine which equation correctly uses this value to solve for [tex]\( a \)[/tex].

First, recall the definitions of the trigonometric functions:
- Cosine function ([tex]\(\cos\)[/tex]) relates the adjacent side (here [tex]\( b \)[/tex]) to the hypotenuse.
- Tangent function ([tex]\(\tan\)[/tex]) is the ratio of the opposite side to the adjacent side.

Given options:
- Option 1: [tex]\(\tan(22.6^\circ) = \frac{a}{13}\)[/tex]
- Option 2: [tex]\(\tan(22.6^\circ) = \frac{13}{a}\)[/tex]
- Option 3: [tex]\(\tan(22.6^\circ) = \frac{a}{12}\)[/tex]
- Option 4: [tex]\(\tan(22.6^\circ) = \frac{12}{a}\)[/tex]

Let's evaluate each option using the known value of [tex]\( \tan(22.6^\circ) \)[/tex]:

1. Option 1:
[tex]\[ \tan(22.6^\circ) = \frac{a}{13} \][/tex]
This means we need to check if [tex]\(\tan(22.6^\circ) \approx \frac{a}{13}\)[/tex]. Calculated comparison shows this is False.

2. Option 2:
[tex]\[ \tan(22.6^\circ) = \frac{13}{a} \][/tex]
This means we need to check if [tex]\(\tan(22.6^\circ) \approx \frac{13}{a}\)[/tex]. Calculated comparison shows this is False.

3. Option 3:
[tex]\[ \tan(22.6^\circ) = \frac{a}{12} \][/tex]
This means we need to check if [tex]\(\tan(22.6^\circ) \approx \frac{a}{12}\)[/tex]. Calculated comparison shows this is False.

4. Option 4:
[tex]\[ \tan(22.6^\circ) = \frac{12}{a} \][/tex]
This means we need to check if [tex]\(\tan(22.6^\circ) \approx \frac{12}{a}\)[/tex]. Calculated comparison shows this is False.

After evaluating all the options, we observe that all provided comparisons return False based on the results.

Thus no option correctly correlates [tex]\( \tan(22.6^\circ) \)[/tex] with the given values to solve for [tex]\( a \)[/tex] using the value of [tex]\( b \)[/tex].