What is the simplified form of [tex]\sqrt{\frac{2160 x^8}{60 x^2}}[/tex]? Assume [tex]x \neq 0[/tex].

A. [tex]36 x^3[/tex]
B. [tex]36 x^2[/tex]
C. [tex]6 x^3[/tex]
D. [tex]6 x^2[/tex]



Answer :

To simplify the given expression [tex]\(\sqrt{\frac{2160 x^8}{60 x^2}}\)[/tex], follow these steps:

1. Simplify the fraction inside the square root:
[tex]\[ \frac{2160 x^8}{60 x^2} \][/tex]

2. Factor out the constants and powers of [tex]\(x\)[/tex]:
[tex]\[ = \frac{2160}{60} \cdot \frac{x^8}{x^2} \][/tex]

3. Simplify the fraction with constants:
[tex]\[ 2160 \div 60 = 36 \][/tex]
So, the expression now is:
[tex]\[ 36 \cdot \frac{x^8}{x^2} \][/tex]

4. Simplify the powers of [tex]\(x\)[/tex]:
[tex]\[ \frac{x^8}{x^2} = x^{8-2} = x^6 \][/tex]
So, the expression now is:
[tex]\[ 36 x^6 \][/tex]

5. Take the square root of the simplified expression:
[tex]\[ \sqrt{36 x^6} \][/tex]

6. Simplify the square root:
Remember that [tex]\(\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}\)[/tex].

Hence:
[tex]\[ \sqrt{36 x^6} = \sqrt{36} \cdot \sqrt{x^6} \][/tex]

7. Evaluate the square roots:
[tex]\[ \sqrt{36} = 6 \][/tex]
For the powers of [tex]\(x\)[/tex]:
[tex]\[ \sqrt{x^6} = x^{6/2} = x^3 \][/tex]

8. Combine the results:
[tex]\[ 6 \cdot x^3 = 6 x^3 \][/tex]

Thus, the simplified form of [tex]\(\sqrt{\frac{2160 x^8}{60 x^2}}\)[/tex] is [tex]\(6 x^3\)[/tex].

The correct answer is:
[tex]\[ 6 x^3 \][/tex]