Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each value to the correct expression.

Values:
- 8
- 5
- 0
- 15
- 27
- 22

Expressions:
1. [tex]$4+8\left(\frac{1}{4}+2\right)$[/tex] [tex]$\square$[/tex]
2. [tex]$1+5 \cdot 2+(1+3)^2$[/tex] [tex]$\square$[/tex]
3. [tex]$0.25 \cdot 4^3-1$[/tex] [tex]$\square$[/tex]



Answer :

Sure, let's break down each expression step-by-step to match it with the correct value.

### 1. Expression: [tex]\(4 + 8 \left(\frac{1}{4} + 2\right)\)[/tex]

Step-by-Step Solution:
1. Inside parentheses first: [tex]\(\frac{1}{4} + 2 = \frac{1}{4} + \frac{8}{4} = \frac{9}{4} = 2.25\)[/tex]
2. Multiplication: [tex]\(8 \times 2.25 = 18\)[/tex]
3. Addition: [tex]\(4 + 18 = 22\)[/tex]

So, the value for [tex]\(4 + 8 \left(\frac{1}{4} + 2\right)\)[/tex] is 22.

### 2. Expression: [tex]\(0.25 \cdot 4^3 - 1\)[/tex]

Step-by-Step Solution:
1. Exponentiation first: [tex]\(4^3 = 64\)[/tex]
2. Multiplication: [tex]\(0.25 \times 64 = 16\)[/tex]
3. Subtraction: [tex]\(16 - 1 = 15\)[/tex]

So, the value for [tex]\(0.25 \cdot 4^3 - 1\)[/tex] is 15.

### 3. Expression: [tex]\(1 + 5 \cdot 2 + (1 + 3)^2\)[/tex]

Step-by-Step Solution:
1. Inside parentheses first: [tex]\((1 + 3) = 4\)[/tex]
2. Exponentiation: [tex]\(4^2 = 16\)[/tex]
3. Multiplication: [tex]\(5 \times 2 = 10\)[/tex]
4. Addition: [tex]\(1 + 10 + 16 = 27\)[/tex]

So, the value for [tex]\(1 + 5 \cdot 2 + (1 + 3)^2\)[/tex] is 27.

### Matching Values to Expressions

- [tex]\(4 + 8 \left(\frac{1}{4} + 2\right)\)[/tex] matches with 22
- [tex]\(0.25 \cdot 4^3 - 1\)[/tex] matches with 15
- [tex]\(1 + 5 \cdot 2 + (1 + 3)^2\)[/tex] matches with 27

Let's pair them:

[tex]\(4 + 8 \left(\frac{1}{4} + 2\right)\)[/tex] ⟹ 22

[tex]\(0.25 \cdot 4^3 - 1\)[/tex] ⟹ 15

[tex]\(1 + 5 \cdot 2 + (1 + 3)^2\)[/tex] ⟹ 27