Let's complete the table correctly to represent the sample space for Alexis's situation.
[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{\text{Letter Tile}} \\
\hline & & A & B & C \\
\hline & 1 & \text{A-1} & \text{B-1} & \text{C-1} \\
\cline{2-5} \text{Number Tile} & 2 & \text{A-2} & \text{B-2} & \text{C-2} \\
\cline{2-5} & 3 & \text{A-3} & \text{B-3} & \text{C-3} \\
\hline
\end{tabular}
\][/tex]
So, the sample space can be represented by the following tiles:
- A-1, B-1, C-1
- A-2, B-2, C-2
- A-3, B-3, C-3
This covers every possible combination of picking a letter tile (A, B, or C) followed by a number tile (1, 2, or 3).
The sample size of the event, which is the total number of possible outcomes, is 9.