Type the correct answer in each box.

There are three letter tiles—A, B, and C—in a bag, and there are three number tiles—1, 2, and 3—in another bag. Alexis picks a letter tile, and then she picks a number tile. Complete the table representing the sample space for this situation.

\begin{tabular}{|c|c|c|c|c|}
\hline & & \multicolumn{3}{|c|}{ Letter Tile } \\
\hline & & A & B & C \\
\hline & 1 & A-1 & B-1 & C-1 \\
\cline { 2 - 5 } Number Tile & 2 & [tex]$A-2$[/tex] & [tex]$B-2$[/tex] & C-2 \\
\cline { 2 - 5 } & 3 & [tex]$A-3$[/tex] & [tex]$B-3$[/tex] & [tex]$C-3$[/tex] \\
\hline
\end{tabular}

The sample size of the event is [tex]$\square$[/tex]



Answer :

Let's complete the table correctly to represent the sample space for Alexis's situation.

[tex]\[ \begin{tabular}{|c|c|c|c|c|} \hline & & \multicolumn{3}{|c|}{\text{Letter Tile}} \\ \hline & & A & B & C \\ \hline & 1 & \text{A-1} & \text{B-1} & \text{C-1} \\ \cline{2-5} \text{Number Tile} & 2 & \text{A-2} & \text{B-2} & \text{C-2} \\ \cline{2-5} & 3 & \text{A-3} & \text{B-3} & \text{C-3} \\ \hline \end{tabular} \][/tex]

So, the sample space can be represented by the following tiles:
- A-1, B-1, C-1
- A-2, B-2, C-2
- A-3, B-3, C-3

This covers every possible combination of picking a letter tile (A, B, or C) followed by a number tile (1, 2, or 3).

The sample size of the event, which is the total number of possible outcomes, is 9.