A regular hexagon has an apothem measuring [tex]$14 \, \text{cm}$[/tex] and an approximate perimeter of [tex]$96 \, \text{cm}$[/tex].

What is the approximate area of the hexagon?

A. [tex]224 \, \text{cm}^2[/tex]
B. [tex]336 \, \text{cm}^2[/tex]
C. [tex]448 \, \text{cm}^2[/tex]
D. [tex]672 \, \text{cm}^2[/tex]



Answer :

To determine the approximate area of a regular hexagon given its apothem and perimeter, we can use the formula for the area of a polygon:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{apothem} \times \text{perimeter} \][/tex]

Given in the problem:
- The apothem is [tex]\( 14 \text{ cm} \)[/tex].
- The perimeter is [tex]\( 96 \text{ cm} \)[/tex].

Now let's apply these values to the formula:

1. Write down the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times \text{apothem} \times \text{perimeter} \][/tex]

2. Substitute the given values into the formula:
[tex]\[ \text{Area} = \frac{1}{2} \times 14 \, \text{cm} \times 96 \, \text{cm} \][/tex]

3. Calculate the product of the apothem and the perimeter:
[tex]\[ 14 \, \text{cm} \times 96 \, \text{cm} = 1344 \, \text{cm}^2 \][/tex]

4. Multiply by [tex]\( \frac{1}{2} \)[/tex] to find the area:
[tex]\[ \text{Area} = \frac{1}{2} \times 1344 \, \text{cm}^2 = 672 \, \text{cm}^2 \][/tex]

Thus, the approximate area of the hexagon is [tex]\( 672 \, \text{cm}^2 \)[/tex].

The correct answer is therefore:

[tex]\[ 672 \, \text{cm}^2 \][/tex]

So the final answer is:
[tex]\[ \boxed{672 \, \text{cm}^2} \][/tex]