Sure! Let's solve [tex]\( 6 \sqrt[3]{375} - 2 \sqrt[3]{192} \)[/tex] step by step.
1. Calculate the cube root of 375:
[tex]\[
\sqrt[3]{375} \approx 7.211
\][/tex]
2. Calculate the cube root of 192:
[tex]\[
\sqrt[3]{192} \approx 5.769
\][/tex]
3. Multiply the first cube root by its coefficient:
[tex]\[
6 \times 7.211 \approx 43.267
\][/tex]
4. Multiply the second cube root by its coefficient:
[tex]\[
2 \times 5.769 \approx 11.538
\][/tex]
5. Finally, subtract the second product from the first product:
[tex]\[
43.267 - 11.538 \approx 31.729
\][/tex]
So, the solution to [tex]\( 6 \sqrt[3]{375} - 2 \sqrt[3]{192} \)[/tex] is approximately [tex]\( 31.729 \)[/tex].