Answer :
Certainly! Let's break down each part of the problem step-by-step.
### 1. Calculate [tex]\(\frac{14}{8}\)[/tex]:
To find the value of the fraction [tex]\(\frac{14}{8}\)[/tex], simply divide 14 by 8:
[tex]\[ \frac{14}{8} = 1.75 \][/tex]
So, [tex]\(\frac{14}{8} = 1.75\)[/tex].
### 2. Calculate [tex]\(96 + 8\)[/tex]:
To find the sum of 96 and 8, just add the two numbers together:
[tex]\[ 96 + 8 = 104 \][/tex]
So, [tex]\(96 + 8 = 104\)[/tex].
### 3. Calculate [tex]\(\frac{96}{4}\)[/tex]:
To find the value of the fraction [tex]\(\frac{96}{4}\)[/tex], simply divide 96 by 4:
[tex]\[ \frac{96}{4} = 24 \][/tex]
So, [tex]\(\frac{96}{4} = 24\)[/tex].
### 4. Calculate the height involving the two radii:
Given the radii [tex]\(r = 8 \, \text{cm}\)[/tex] and [tex]\(R = 14 \, \text{cm}\)[/tex], let's assume we are calculating the height of a frustum of a cone where the bigger radius [tex]\(R\)[/tex] and the smaller radius [tex]\(r\)[/tex] are given. In this context, the difference between the two radii gives us the height of the frustum:
[tex]\[ \text{Height} = R - r = 14 \, \text{cm} - 8 \, \text{cm} = 6 \, \text{cm} \][/tex]
So, the height of the frustum is [tex]\(6 \, \text{cm}\)[/tex].
### Summary of Results:
- [tex]\(\frac{14}{8} = 1.75\)[/tex]
- [tex]\(96 + 8 = 104\)[/tex]
- [tex]\(\frac{96}{4} = 24\)[/tex]
- The height of the frustum of the cone is [tex]\(6 \, \text{cm}\)[/tex]
These calculations provide the answers needed for each part of the question.
### 1. Calculate [tex]\(\frac{14}{8}\)[/tex]:
To find the value of the fraction [tex]\(\frac{14}{8}\)[/tex], simply divide 14 by 8:
[tex]\[ \frac{14}{8} = 1.75 \][/tex]
So, [tex]\(\frac{14}{8} = 1.75\)[/tex].
### 2. Calculate [tex]\(96 + 8\)[/tex]:
To find the sum of 96 and 8, just add the two numbers together:
[tex]\[ 96 + 8 = 104 \][/tex]
So, [tex]\(96 + 8 = 104\)[/tex].
### 3. Calculate [tex]\(\frac{96}{4}\)[/tex]:
To find the value of the fraction [tex]\(\frac{96}{4}\)[/tex], simply divide 96 by 4:
[tex]\[ \frac{96}{4} = 24 \][/tex]
So, [tex]\(\frac{96}{4} = 24\)[/tex].
### 4. Calculate the height involving the two radii:
Given the radii [tex]\(r = 8 \, \text{cm}\)[/tex] and [tex]\(R = 14 \, \text{cm}\)[/tex], let's assume we are calculating the height of a frustum of a cone where the bigger radius [tex]\(R\)[/tex] and the smaller radius [tex]\(r\)[/tex] are given. In this context, the difference between the two radii gives us the height of the frustum:
[tex]\[ \text{Height} = R - r = 14 \, \text{cm} - 8 \, \text{cm} = 6 \, \text{cm} \][/tex]
So, the height of the frustum is [tex]\(6 \, \text{cm}\)[/tex].
### Summary of Results:
- [tex]\(\frac{14}{8} = 1.75\)[/tex]
- [tex]\(96 + 8 = 104\)[/tex]
- [tex]\(\frac{96}{4} = 24\)[/tex]
- The height of the frustum of the cone is [tex]\(6 \, \text{cm}\)[/tex]
These calculations provide the answers needed for each part of the question.