Answer :

To solve the equation [tex]\( C = \frac{1}{3} h (r + k) \)[/tex] for [tex]\( r \)[/tex], follow these steps:

1. Start with the given equation:
[tex]\[ C = \frac{1}{3} h (r + k) \][/tex]

2. Isolate the term with [tex]\( r \)[/tex] on one side:
Multiply both sides of the equation by 3 to get rid of the fraction:
[tex]\[ 3C = h (r + k) \][/tex]

3. Solve for [tex]\( r \)[/tex]:
Divide both sides by [tex]\( h \)[/tex] to isolate [tex]\( r + k \)[/tex]:
[tex]\[ \frac{3C}{h} = r + k \][/tex]

4. Subtract [tex]\( k \)[/tex] from both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \frac{3C}{h} - k \][/tex]

Thus, the solution for [tex]\( r \)[/tex] in terms of [tex]\( C \)[/tex], [tex]\( h \)[/tex], and [tex]\( k \)[/tex] is:
[tex]\[ r = \frac{3C}{h} - k \][/tex]

So, the answer is:
[tex]\[ r = \boxed{\frac{3C}{h} - k} \][/tex]